mirror of
https://gitlab.com/sheaf/metabrush.git
synced 2024-11-27 09:24:08 +00:00
Slight refactor of bisection dimension choosing logic
This commit is contained in:
parent
ced714987e
commit
8009983b37
|
@ -182,7 +182,7 @@ benchCases :: [ TestCase ]
|
|||
benchCases =
|
||||
[ ellipseTestCase opts ("minWidth=" ++ show minWidth ++ ",ε=" ++ show narrowAbs) ( 0, 1 ) pi $ defaultStartBoxes [ 2 ]
|
||||
| minWidth <- [ 1e-5 ]
|
||||
, narrowAbs <- [ 1e-5, 1e-4, 1e-3, 5e-3, 8e-3, 1e-2, 2e-2, 3e-2, 4e-2, 5e-2, 1e-1 ]
|
||||
, narrowAbs <- [ 5e-2 ]
|
||||
, let opts =
|
||||
RootIsolationOptions
|
||||
{ minWidth
|
||||
|
|
|
@ -130,6 +130,7 @@ newtype Vec n a = Vec { vecList :: [ a ] }
|
|||
|
||||
universe :: forall n. KnownNat n => Vec n ( Fin n )
|
||||
universe = Vec [ Fin i | i <- [ 1 .. fromIntegral ( natVal' @n proxy# ) ] ]
|
||||
{-# INLINEABLE universe #-}
|
||||
|
||||
coordinates :: forall r u. ( Representable r u ) => u -> Vec ( RepDim u ) r
|
||||
coordinates u = fmap ( index u ) $ universe @( RepDim u )
|
||||
|
@ -160,7 +161,7 @@ zipIndices ( Vec v ) = zipIndices_ 1 v
|
|||
--------------------------------------------------------------------------------
|
||||
|
||||
-- | Rotate a vector by the given angle (counter-clockwise),
|
||||
-- given the cosine and sine of the angle (in that order)
|
||||
-- given the cosine and sine of the angle (in that order).
|
||||
rotate :: ( Representable r m, RepDim m ~ 2, Ring r )
|
||||
=> r -- \( \cos \theta \)
|
||||
-> r -- \( \sin \theta \)
|
||||
|
|
|
@ -44,12 +44,14 @@ import Data.Kind
|
|||
( Type )
|
||||
import Data.Foldable
|
||||
( toList )
|
||||
import Data.Functor
|
||||
( (<&>) )
|
||||
import Data.List
|
||||
( partition, sort )
|
||||
( partition )
|
||||
import Data.List.NonEmpty
|
||||
( NonEmpty )
|
||||
import qualified Data.List.NonEmpty as NE
|
||||
( NonEmpty(..), last, singleton )
|
||||
( NonEmpty(..), cons, filter, fromList, last, singleton, sort )
|
||||
import Data.Semigroup
|
||||
( Arg(..), Dual(..) )
|
||||
import Numeric
|
||||
|
@ -182,9 +184,17 @@ type BisectionOptions :: Nat -> Nat -> Type
|
|||
data BisectionOptions n d =
|
||||
BisectionOptions
|
||||
{ canHaveSols :: !( ( 𝕀ℝ n -> D 1 ( 𝕀ℝ n ) ( 𝕀ℝ d ) ) -> Box n -> Bool )
|
||||
, fallbackBisectionDim :: !( [ ( RootIsolationStep, Box n ) ] -> BoxHistory n -> ( 𝕀ℝ n -> D 1 ( 𝕀ℝ n ) ( 𝕀ℝ d ) ) -> ( Fin n, String ) )
|
||||
, fallbackBisectionDim :: !( BisectionDimPicker n d )
|
||||
}
|
||||
|
||||
type BisectionDimPicker n d
|
||||
= forall r
|
||||
. [ ( RootIsolationStep, Box n ) ]
|
||||
-> BoxHistory n
|
||||
-> ( 𝕀ℝ n -> D 1 ( 𝕀ℝ n ) ( 𝕀ℝ d ) )
|
||||
-> NE.NonEmpty ( Fin n, r )
|
||||
-> ( r, String )
|
||||
|
||||
-- | Options for the interval Gauss–Seidel method.
|
||||
type GaussSeidelOptions :: Nat -> Nat -> Type
|
||||
data GaussSeidelOptions n d =
|
||||
|
@ -192,7 +202,7 @@ data GaussSeidelOptions n d =
|
|||
{ -- | Which preconditioner to user?
|
||||
gsPreconditioner :: !Preconditioner
|
||||
-- | Function that projects over the equations we will consider
|
||||
-- (the identity for a well-determined problem, or a project for
|
||||
-- (the identity for a well-determined problem, or a projection for
|
||||
-- an overdetermined system).
|
||||
, gsDims :: ( 𝕀ℝ d -> 𝕀ℝ n ) }
|
||||
|
||||
|
@ -246,7 +256,7 @@ defaultRootIsolationAlgorithms minWidth narrowAbs box history
|
|||
-> NE.singleton $ Bisection ( defaultBisectionOptions minWidth narrowAbs box )
|
||||
-- Otherwise, do a normal round.
|
||||
-- Currently: we try an interval Gauss–Seidel step followed by box(1)-consistency.
|
||||
_ -> GaussSeidel defaultGaussSeidelOptions
|
||||
_ -> GaussSeidel _gaussSeidelOptions
|
||||
NE.:| [ Box1 _box1Options ]
|
||||
|
||||
where
|
||||
|
@ -254,7 +264,7 @@ defaultRootIsolationAlgorithms minWidth narrowAbs box history
|
|||
_box1Options =
|
||||
Box1Options
|
||||
{ box1EpsEq = narrowAbs
|
||||
, box1CoordsToNarrow = toList $ universe @n -- [ Fin 1, Fin 2 ]
|
||||
, box1CoordsToNarrow = toList $ universe @n
|
||||
, box1EqsToUse = toList $ universe @d
|
||||
}
|
||||
|
||||
|
@ -267,23 +277,27 @@ defaultRootIsolationAlgorithms minWidth narrowAbs box history
|
|||
, box2EqsToUse = toList $ universe @d
|
||||
}
|
||||
|
||||
_gaussSeidelOptions :: GaussSeidelOptions n d
|
||||
_gaussSeidelOptions =
|
||||
GaussSeidelOptions
|
||||
{ gsPreconditioner = InverseMidJacobian
|
||||
, gsDims =
|
||||
\ ( 𝕀 ( ℝ3 a_lo b_lo c_lo ) ( ℝ3 a_hi b_hi c_hi ) ) ->
|
||||
case length history `mod` 3 of
|
||||
0 -> 𝕀 ( ℝ2 a_lo b_lo ) ( ℝ2 a_hi b_hi )
|
||||
1 -> 𝕀 ( ℝ2 b_lo c_lo ) ( ℝ2 b_hi c_hi )
|
||||
_ -> 𝕀 ( ℝ2 a_lo c_lo ) ( ℝ2 a_hi c_hi )
|
||||
}
|
||||
|
||||
-- Did we reduce the box width by at least "narrowAbs" in at least one of the dimensions?
|
||||
sufficientlySmallerThan :: Box n -> Box n -> Bool
|
||||
b1 `sufficientlySmallerThan` b2 =
|
||||
or $
|
||||
( \ cd1 cd2 -> width cd2 - width cd1 > narrowAbs )
|
||||
( \ cd1 cd2 -> width cd2 - width cd1 >= narrowAbs )
|
||||
<$> coordinates b1
|
||||
<*> coordinates b2
|
||||
{-# INLINEABLE defaultRootIsolationAlgorithms #-}
|
||||
|
||||
defaultGaussSeidelOptions :: GaussSeidelOptions N 3
|
||||
defaultGaussSeidelOptions =
|
||||
GaussSeidelOptions
|
||||
{ gsPreconditioner = InverseMidJacobian
|
||||
, gsDims = \ ( 𝕀 ( ℝ3 _a_lo b_lo c_lo ) ( ℝ3 _a_hi b_hi c_hi ) )
|
||||
-> 𝕀 ( ℝ2 b_lo c_lo ) ( ℝ2 b_hi c_hi )
|
||||
}
|
||||
|
||||
defaultBisectionOptions
|
||||
:: forall n d
|
||||
. ( 1 <= n, BoxCt n d )
|
||||
|
@ -295,7 +309,7 @@ defaultBisectionOptions minWidth _narrowAbs box =
|
|||
\ eqs box' ->
|
||||
-- box(0)-consistency
|
||||
let iRange' :: Box d
|
||||
iRange' = ( `monIndex` zeroMonomial ) $ eqs box'
|
||||
iRange' = eqs box' `monIndex` zeroMonomial
|
||||
in unT ( origin @Double ) `inside` iRange'
|
||||
|
||||
-- box(1)-consistency
|
||||
|
@ -309,52 +323,52 @@ defaultBisectionOptions minWidth _narrowAbs box =
|
|||
-- iRange'' = eqs box'' `monIndex` zeroMonomial
|
||||
--in unT ( origin @Double ) `inside` iRange''
|
||||
, fallbackBisectionDim =
|
||||
\ _roundHist _prevRoundsHist eqs ->
|
||||
let df = eqs box
|
||||
datPerCoord =
|
||||
[ CoordBisectionData
|
||||
\ _roundHist _prevRoundsHist eqs possibleCoordChoices ->
|
||||
let datPerCoord =
|
||||
possibleCoordChoices <&> \ ( i, r ) ->
|
||||
CoordBisectionData
|
||||
{ coordIndex = i
|
||||
, coordInterval = box `index` i
|
||||
, coordJacobianColumn = df `monIndex` ( linearMonomial i )
|
||||
, coordJacobianColumn = eqs box `monIndex` ( linearMonomial i )
|
||||
, coordBisectionData = r
|
||||
}
|
||||
| i <- toList $ universe @n ]
|
||||
|
||||
-- First, check if the largest dimension is over 10 times larger
|
||||
-- First, check if the largest dimension is over 20 times larger
|
||||
-- than the smallest dimension; if so bisect along that coordinate.
|
||||
in case sortOnArg ( width . coordInterval ) datPerCoord of
|
||||
[] -> error "impossible: dimension 0"
|
||||
[Arg _ d] -> (coordIndex d, "")
|
||||
Arg w0 _ : ds ->
|
||||
in case sortOnArgNE ( width . coordInterval ) datPerCoord of
|
||||
Arg _ d NE.:| [] -> ( coordBisectionData d, "" )
|
||||
Arg w0 _ NE.:| ds ->
|
||||
let Arg w1 d1 = last ds
|
||||
in if w1 >= 10 * w0
|
||||
then ( coordIndex d1, "tooWide" )
|
||||
in if w1 >= 20 * w0
|
||||
then ( coordBisectionData d1, "tooWide" )
|
||||
-- Otherwise, pick the dimension with the largest spread = width * Jacobian column norm
|
||||
else case filter ( not . isTooSmall ) $ sortOnArg ( Dual . spread ) datPerCoord of
|
||||
[] -> ( coordIndex d1, "tooWide'" )
|
||||
Arg _ d : _ -> ( coordIndex d, "spread" )
|
||||
else
|
||||
let isTooSmall ( Arg ( Dual w ) _ ) = w < minWidth
|
||||
in case NE.filter ( not . isTooSmall ) $ sortOnArgNE ( Dual . spread ) datPerCoord of
|
||||
[] -> ( coordBisectionData d1, "tooWide'" )
|
||||
Arg _ d : _ -> ( coordBisectionData d, "spread" )
|
||||
}
|
||||
where
|
||||
isTooSmall ( Arg ( Dual w ) _ ) = w < minWidth
|
||||
{-# INLINEABLE defaultBisectionOptions #-}
|
||||
|
||||
sortOnArg :: Ord b => (a -> b) -> [a] -> [Arg b a]
|
||||
sortOnArg f = sort . map ( \ a -> Arg ( f a ) a )
|
||||
{-# INLINEABLE sortOnArg #-}
|
||||
sortOnArgNE :: Ord b => ( a -> b ) -> NE.NonEmpty a -> NE.NonEmpty ( Arg b a )
|
||||
sortOnArgNE f = NE.sort . fmap ( \ a -> Arg ( f a ) a )
|
||||
{-# INLINEABLE sortOnArgNE #-}
|
||||
|
||||
type CoordBisectionData :: Nat -> Nat -> Type
|
||||
data CoordBisectionData n d =
|
||||
type CoordBisectionData :: Nat -> Nat -> Type -> Type
|
||||
data CoordBisectionData n d r =
|
||||
CoordBisectionData
|
||||
{ coordIndex :: !( Fin n )
|
||||
, coordInterval :: !( 𝕀 Double )
|
||||
, coordJacobianColumn :: !( 𝕀ℝ d )
|
||||
, coordBisectionData :: !r
|
||||
}
|
||||
deriving stock instance Show ( ℝ d )
|
||||
=> Show ( CoordBisectionData n d )
|
||||
deriving stock instance ( Show ( ℝ d ), Show r )
|
||||
=> Show ( CoordBisectionData n d r )
|
||||
|
||||
spread :: ( BoxCt n d, Representable Double ( ℝ d ) )
|
||||
=> CoordBisectionData n d -> Double
|
||||
=> CoordBisectionData n d r -> Double
|
||||
spread ( CoordBisectionData { coordInterval = cd, coordJacobianColumn = j_cd } )
|
||||
= width cd * normVI j_cd
|
||||
= width cd * normVI j_cd --maxVI j_cd
|
||||
{-# INLINEABLE spread #-}
|
||||
|
||||
-- | Use the following algorithms using interval arithmetic in order
|
||||
|
@ -400,13 +414,12 @@ isolateRootsIn
|
|||
= case cuspFindingAlgorithms cand history of
|
||||
Right strats -> doStrategies history strats cand
|
||||
Left whyStop -> do
|
||||
-- We are giving up on this box (e.g. because it is too small,
|
||||
-- or we have reached an iteration depth).
|
||||
-- We are giving up on this box (e.g. because it is too small).
|
||||
tell ( [ cand ], [] )
|
||||
return [ RootIsolationLeaf whyStop cand ]
|
||||
where
|
||||
iRange :: Box d
|
||||
iRange = ( `monIndex` zeroMonomial ) $ eqs cand
|
||||
iRange = eqs cand `monIndex` zeroMonomial
|
||||
|
||||
-- Run a round of cusp finding strategies, then recur.
|
||||
doStrategies
|
||||
|
@ -477,56 +490,57 @@ doStrategy roundHistory previousRoundsHistory eqs minWidth algo box =
|
|||
-- (The difficult part lies in determining along which dimension to bisect.)
|
||||
bisect
|
||||
:: forall n
|
||||
. ( KnownNat n, Representable Double ( ℝ n ) )
|
||||
. ( 1 <= n, KnownNat n, Representable Double ( ℝ n ) )
|
||||
=> ( Box n -> Bool )
|
||||
-- ^ how to check whether a box contains solutions
|
||||
-> ( Fin n, String )
|
||||
-- ^ fallback choice of dimension (and "why" we chose it)
|
||||
-> ( forall r. NE.NonEmpty ( Fin n, r ) -> ( r, String ) )
|
||||
-- ^ heuristic bisection coordinate picker
|
||||
-> Box n
|
||||
-- ^ the box to bisect
|
||||
-> ( [ Box n ], ( String, Double ) )
|
||||
bisect canHaveSols ( fallbackDim, why ) box =
|
||||
-- We try to bisect along a dimension which eliminates zeros from one of the
|
||||
-- sub-regions.
|
||||
--
|
||||
-- If this fails, we fall back to the provided dimension choice.
|
||||
bisect canHaveSols pickFallBackBisCoord box =
|
||||
case findFewestSols solsList of
|
||||
Just ( Arg _nbSols ( i, mid, oks ) ) ->
|
||||
( oks, ("cd = " ++ show i, mid ) )
|
||||
Nothing ->
|
||||
case bisectInCoord box fallbackDim of
|
||||
( mid, ( lo, hi ) ) ->
|
||||
( [ lo, hi ], ( why, mid ) )
|
||||
-- If there is a coordinate for which bisection results in no solutions,
|
||||
-- or in fewer sub-boxes with solutions than any other coordinate choice,
|
||||
-- pick that coordinate for bisection.
|
||||
( i, ( mid, subBoxesWithSols ) ) NE.:| [] ->
|
||||
( subBoxesWithSols, ( "cd = " ++ show i, mid ) )
|
||||
-- Otherwise, fall back to the provided heuristic.
|
||||
is ->
|
||||
let ( ( mid, subBoxesWithSols ), why ) = pickFallBackBisCoord is
|
||||
in ( subBoxesWithSols, ( why, mid ) )
|
||||
where
|
||||
solsList =
|
||||
[ Arg ( fromIntegral $ length oks ) ( i, mid, oks )
|
||||
NE.fromList -- (n >= 1 so definitely non-empty)
|
||||
[ Arg ( fromIntegral $ length subBoxesWithSols ) ( i, ( mid, subBoxesWithSols ) )
|
||||
| i <- toList $ universe @n
|
||||
, let (mid, (lo, hi)) = bisectInCoord box i
|
||||
lo_ok = canHaveSols lo
|
||||
hi_ok = canHaveSols hi
|
||||
oks = [ lo | lo_ok ] ++ [ hi | hi_ok ]
|
||||
, let ( mid, ( loBox, hiBox ) ) = bisectInCoord box i
|
||||
loBox_ok = canHaveSols loBox
|
||||
hiBox_ok = canHaveSols hiBox
|
||||
subBoxesWithSols = [ loBox | loBox_ok ] ++ [ hiBox | hiBox_ok ]
|
||||
]
|
||||
{-# INLINEABLE bisect #-}
|
||||
|
||||
-- | Find any element with the least argument.
|
||||
-- | Return the elements with the least argument.
|
||||
--
|
||||
-- NB: this function shortcuts as soon as it finds an element with argument 0.
|
||||
findFewestSols :: forall a. [ Arg Word a ] -> Maybe ( Arg Word a )
|
||||
findFewestSols [] = Nothing
|
||||
findFewestSols ( arg@( Arg nbSols _ ) : args )
|
||||
findFewestSols :: forall a. NE.NonEmpty ( Arg Word a ) -> NE.NonEmpty a
|
||||
findFewestSols ( ( Arg nbSols arg ) NE.:| args )
|
||||
| nbSols == 0
|
||||
= Just arg
|
||||
= NE.singleton arg
|
||||
| otherwise
|
||||
= Just $ go arg args
|
||||
= go nbSols ( NE.singleton arg ) args
|
||||
where
|
||||
go :: Arg Word a -> [ Arg Word a ] -> Arg Word a
|
||||
go bestSoFar [] = bestSoFar
|
||||
go bestSoFar@( Arg bestNbSolsSoFar _ ) ( arg'@( Arg nbSols' _ ) : args' )
|
||||
go :: Word -> NE.NonEmpty a -> [ Arg Word a ] -> NE.NonEmpty a
|
||||
go _ bestSoFar [] = bestSoFar
|
||||
go bestNbSolsSoFar bestSoFar ( ( Arg nbSols' arg' ) : args' )
|
||||
| nbSols' == 0
|
||||
= arg'
|
||||
| nbSols' < bestNbSolsSoFar
|
||||
= go arg' args'
|
||||
= NE.singleton arg'
|
||||
| otherwise
|
||||
= go bestSoFar args'
|
||||
= case compare nbSols' bestNbSolsSoFar of
|
||||
LT -> go nbSols' ( NE.singleton arg' ) args'
|
||||
GT -> go bestNbSolsSoFar bestSoFar args'
|
||||
EQ -> go bestNbSolsSoFar ( arg `NE.cons` bestSoFar ) args'
|
||||
|
||||
bisectInCoord
|
||||
:: Representable Double ( ℝ n )
|
||||
|
@ -755,8 +769,8 @@ matMulVec
|
|||
-> 𝕀ℝ m -- ^ vector \( v \)
|
||||
-> 𝕀ℝ n
|
||||
matMulVec as v = tabulate $ \ r ->
|
||||
sum [ scaleInterval ( ( as ! c ) `index` r ) ( index v c )
|
||||
| c <- toList ( universe @m )
|
||||
sum [ scaleInterval ( a `index` r ) ( index v c )
|
||||
| ( c, a ) <- toList ( (,) <$> universe @m <*> as )
|
||||
]
|
||||
{-# INLINEABLE matMulVec #-}
|
||||
|
||||
|
@ -768,6 +782,14 @@ normVI ( 𝕀 los his ) =
|
|||
nm1 lo hi = max ( abs lo ) ( abs hi ) Ring.^ 2
|
||||
{-# INLINEABLE normVI #-}
|
||||
|
||||
maxVI :: ( Applicative ( Vec d ), Representable Double ( ℝ d ) ) => 𝕀ℝ d -> Double
|
||||
maxVI ( 𝕀 los his ) =
|
||||
maximum ( maxAbs <$> coordinates los <*> coordinates his )
|
||||
where
|
||||
maxAbs :: Double -> Double -> Double
|
||||
maxAbs lo hi = max ( abs lo ) ( abs hi )
|
||||
{-# INLINEABLE maxVI #-}
|
||||
|
||||
-- Use the univariate interval Newton method to narrow from the left
|
||||
-- a candidate interval.
|
||||
--
|
||||
|
|
Loading…
Reference in a new issue