mirror of
https://gitlab.com/sheaf/metabrush.git
synced 2024-11-23 15:34:06 +00:00
preparation for interval arithmetic
This commit is contained in:
parent
33a3cbfaa1
commit
a4e9c1cf32
|
@ -194,6 +194,8 @@ library splines
|
|||
^>= 3.2.2.0
|
||||
, prim-instances
|
||||
^>= 0.2
|
||||
, rounded-hw
|
||||
^>= 0.3
|
||||
, vector
|
||||
>= 0.12.1.2 && < 0.14
|
||||
|
||||
|
|
|
@ -1,7 +1,9 @@
|
|||
packages: .
|
||||
|
||||
constraints:
|
||||
acts -finitary
|
||||
acts -finitary,
|
||||
rounded-hw -pure-hs -c99 +avx512 +ghc-prim -x87-long-double
|
||||
|
||||
|
||||
-- Fix a severe bug in Waargonaut (no corresponding Hackage release???)
|
||||
source-repository-package
|
||||
|
|
|
@ -1078,7 +1078,7 @@ instance HandleAction Scroll where
|
|||
| dy > 0
|
||||
= max 0.0078125 ( oldZoomFactor / sqrt 2 )
|
||||
| otherwise
|
||||
= min 256 ( oldZoomFactor * sqrt 2 )
|
||||
= min 4096 ( oldZoomFactor * sqrt 2 )
|
||||
newCenter :: ℝ 2
|
||||
newCenter
|
||||
= ( 1 - oldZoomFactor / newZoomFactor ) *^ ( oldCenter --> mousePos :: T ( ℝ 2 ) )
|
||||
|
|
|
@ -200,8 +200,8 @@ runApplication application = do
|
|||
maxHistorySizeTVar <- STM.newTVarIO @Int 1000
|
||||
fitParametersTVar <- STM.newTVarIO @FitParameters
|
||||
( FitParameters
|
||||
{ maxSubdiv = 2 --3 -- 6
|
||||
, nbSegments = 3 --6 -- 12
|
||||
{ maxSubdiv = 3 --2 --3 -- 6
|
||||
, nbSegments = 40 --3 --6 -- 12
|
||||
, dist_tol = 0.1 -- 5e-3
|
||||
, t_tol = 0.1 -- 1e-4
|
||||
, maxIters = 2 -- 100
|
||||
|
|
|
@ -76,7 +76,7 @@ drawTopLeftCornerRect ( Colours { bg, viewport } ) = do
|
|||
Cairo.moveTo 12 24
|
||||
Cairo.lineTo 12 14
|
||||
Cairo.lineTo 24 14
|
||||
|
||||
|
||||
Cairo.setLineWidth 4
|
||||
withRGBA bg Cairo.setSourceRGBA
|
||||
Cairo.stroke
|
||||
|
|
|
@ -129,7 +129,7 @@ drawPath ( Colours {..} ) = do
|
|||
|
||||
Cairo.setLineWidth 2
|
||||
|
||||
Cairo.newPath
|
||||
Cairo.newPath
|
||||
Cairo.moveTo 7.179688 14.882813
|
||||
Cairo.lineTo 31.820313 8.4375
|
||||
Cairo.stroke
|
||||
|
|
|
@ -172,7 +172,7 @@ updateInfoBar viewportDrawingArea ( InfoBar {..} ) ( Variables { mousePosTVar }
|
|||
GTK.labelSetText zoomText $ Text.pack ( fixed 5 2 ( 100 * zoomFactor ) <> "%" )
|
||||
case mbMousePos of
|
||||
Just ( ℝ2 mx my ) ->
|
||||
GTK.labelSetText cursorPosText $ Text.pack ( "x: " <> fixed 6 2 mx <> "\ny: " <> fixed 6 2 my )
|
||||
GTK.labelSetText cursorPosText $ Text.pack ( "x: " <> fixed 6 4 mx <> "\ny: " <> fixed 6 4 my )
|
||||
Nothing ->
|
||||
GTK.labelSetText cursorPosText $ Text.pack ( "x: " <> na <> "\ny: " <> na )
|
||||
GTK.labelSetText topLeftPosText $ Text.pack ( "x: " <> fixed 6 2 l <> "\ny: " <> fixed 6 2 t )
|
||||
|
|
|
@ -93,7 +93,7 @@ circleBrush =
|
|||
e_x = pure $ ℝ2 1 0
|
||||
e_y = pure $ ℝ2 0 1
|
||||
|
||||
kon = konst @( Record CircleBrushFields )
|
||||
kon = konst @Double @( Record CircleBrushFields )
|
||||
|
||||
ellipseBrush :: Record EllipseBrushFields ~> Spline 'Closed () ( ℝ 2 )
|
||||
ellipseBrush =
|
||||
|
@ -112,4 +112,4 @@ ellipseBrush =
|
|||
e_x = pure $ ℝ2 1 0
|
||||
e_y = pure $ ℝ2 0 1
|
||||
|
||||
kon = konst @( Record EllipseBrushFields )
|
||||
kon = konst @Double @( Record EllipseBrushFields )
|
||||
|
|
|
@ -62,8 +62,8 @@ data Brush brushFields where
|
|||
BrushData
|
||||
:: forall brushFields
|
||||
. ( KnownSymbols brushFields
|
||||
, Representable ( ℝ ( Length brushFields) )
|
||||
, Diffy ( ℝ ( Length brushFields) )
|
||||
, Representable Double ( ℝ ( Length brushFields) )
|
||||
, Diffy Double ( ℝ ( Length brushFields) )
|
||||
, Typeable brushFields )
|
||||
=> { brushName :: !Text
|
||||
, brushFunction :: BrushFunction brushFields
|
||||
|
@ -98,7 +98,7 @@ class ( KnownSymbols pointFields, Typeable pointFields
|
|||
, Show ( Record pointFields )
|
||||
, NFData ( Record pointFields )
|
||||
, Interpolatable ( Record pointFields )
|
||||
, Representable ( ℝ ( Length pointFields ) )
|
||||
, Representable Double ( ℝ ( Length pointFields ) )
|
||||
)
|
||||
=> PointFields pointFields where { }
|
||||
instance ( KnownSymbols pointFields, Typeable pointFields
|
||||
|
@ -106,7 +106,7 @@ instance ( KnownSymbols pointFields, Typeable pointFields
|
|||
, Show ( Record pointFields )
|
||||
, NFData ( Record pointFields )
|
||||
, Interpolatable ( Record pointFields )
|
||||
, Representable ( ℝ ( Length pointFields ) )
|
||||
, Representable Double ( ℝ ( Length pointFields ) )
|
||||
)
|
||||
=> PointFields pointFields where { }
|
||||
|
||||
|
|
|
@ -80,7 +80,7 @@ deriving newtype
|
|||
=> NFData ( Record ks )
|
||||
|
||||
-- | Show a record, using the given type-level field names.
|
||||
instance ( KnownSymbols ks, Representable ( ℝ ( Length ks ) ) )
|
||||
instance ( KnownSymbols ks, Representable Double ( ℝ ( Length ks ) ) )
|
||||
=> Show ( Record ks ) where
|
||||
showsPrec p ( MkR r )
|
||||
= showParen ( p >= 11 )
|
||||
|
@ -117,11 +117,11 @@ instance ( Torsor ( T ( ℝ ( Length ks ) ) ) ( ℝ ( Length ks ) )
|
|||
MkR g --> MkR a = T $ MkR $ unT $ g --> a
|
||||
|
||||
deriving newtype
|
||||
instance Representable ( ℝ ( Length ks ) )
|
||||
=> Representable ( Record ks )
|
||||
instance Representable r ( ℝ ( Length ks ) )
|
||||
=> Representable r ( Record ks )
|
||||
|
||||
type instance D ( Record ks ) = D ( ℝ ( Length ks ) )
|
||||
deriving newtype instance Diffy ( ℝ ( Length ks ) ) => Diffy ( Record ks )
|
||||
deriving newtype instance Diffy Double ( ℝ ( Length ks ) ) => Diffy Double ( Record ks )
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
|
@ -148,8 +148,8 @@ intersect :: forall r1 r2 l1 l2
|
|||
. ( Typeable r1, Typeable r2
|
||||
, KnownSymbols r1, KnownSymbols r2
|
||||
, l1 ~ Length r1, l2 ~ Length r2
|
||||
, Representable ( ℝ l1 ), Representable ( ℝ l2 )
|
||||
, Interpolatable ( Record r1 ), Diffy ( ℝ l2 )
|
||||
, Representable Double ( ℝ l1 ), Representable Double ( ℝ l2 )
|
||||
, Interpolatable ( Record r1 ), Diffy Double ( ℝ l2 )
|
||||
)
|
||||
=> Intersection r1 r2
|
||||
intersect
|
||||
|
@ -172,8 +172,8 @@ data Intersection r1 r2 where
|
|||
:: forall r1r2 r1 r2 l12
|
||||
. ( l12 ~ Length r1r2
|
||||
, KnownSymbols r1r2
|
||||
, Representable ( ℝ l12 )
|
||||
, Diffy ( ℝ l12 )
|
||||
, Representable Double ( ℝ l12 )
|
||||
, Diffy Double ( ℝ l12 )
|
||||
, Interpolatable ( Record r1r2 ) )
|
||||
=> { project :: Record r1 -> Record r1r2
|
||||
, inject :: Record r2 -> Record r1r2 ~> Record r2
|
||||
|
@ -185,12 +185,13 @@ doIntersection
|
|||
:: forall r1 r2 l1 l2 kont
|
||||
. ( KnownSymbols r1, KnownSymbols r2
|
||||
, l1 ~ Length r1, l2 ~ Length r2
|
||||
, Representable ( ℝ l1 ), Representable ( ℝ l2 )
|
||||
, Representable Double ( ℝ l1 ), Representable Double ( ℝ l2 )
|
||||
)
|
||||
=> ( forall r1r2 l12.
|
||||
( r1r2 ~ Intersect r1 r2, l12 ~ Length r1r2
|
||||
, Representable ( ℝ l12 ), Diffy ( ℝ l12 ), Interpolatable ( ℝ l12 )
|
||||
, KnownSymbols r1r2, Representable ( ℝ ( Length r1r2 ) )
|
||||
, Representable Double ( ℝ l12 ), Diffy Double ( ℝ l12 )
|
||||
, Interpolatable ( ℝ l12 )
|
||||
, KnownSymbols r1r2, Representable Double ( ℝ ( Length r1r2 ) )
|
||||
)
|
||||
=> Proxy# r1r2 -> Vec l12 ( Fin l1 ) -> Vec l12 ( Fin l2 ) -> kont )
|
||||
-> kont
|
||||
|
|
|
@ -110,7 +110,8 @@ instance Serialisable ( T ( ℝ 2 ) ) where
|
|||
JSON.Encoder.atKey' "x" encoder x
|
||||
. JSON.Encoder.atKey' "y" encoder y
|
||||
decoder = V2 <$> JSON.Decoder.atKey "x" decoder <*> JSON.Decoder.atKey "y" decoder
|
||||
instance ( KnownSymbols ks, Representable ( ℝ ( Length ks ) ) ) => Serialisable ( Record ks ) where
|
||||
instance ( KnownSymbols ks, Representable Double ( ℝ ( Length ks ) ) )
|
||||
=> Serialisable ( Record ks ) where
|
||||
encoder = contramap encodeFields ( JSON.Encoder.keyValueTupleFoldable ( encoder @Double ) )
|
||||
where
|
||||
encodeFields :: Record ks -> [ ( Text, Double ) ]
|
||||
|
|
|
@ -2,6 +2,8 @@
|
|||
{-# LANGUAGE QuantifiedConstraints #-}
|
||||
{-# LANGUAGE ScopedTypeVariables #-}
|
||||
|
||||
{-# LANGUAGE DuplicateRecordFields #-}
|
||||
|
||||
module Math.Bezier.Stroke
|
||||
( Offset(..)
|
||||
, CachedStroke(..), discardCache, invalidateCache
|
||||
|
@ -106,9 +108,8 @@ import qualified Math.Bezier.Quadratic as Quadratic
|
|||
import Math.Epsilon
|
||||
( epsilon )
|
||||
import Math.Module
|
||||
( Module(..), Inner((^.^)), Interpolatable
|
||||
, lerp, cross
|
||||
, convexCombination, strictlyParallel
|
||||
( Module(..), Inner((^.^)), Cross(cross), Interpolatable
|
||||
, lerp, convexCombination, strictlyParallel
|
||||
)
|
||||
import Math.Orientation
|
||||
( Orientation(..), splineOrientation
|
||||
|
@ -181,7 +182,7 @@ computeStrokeOutline ::
|
|||
forall ( clo :: SplineType ) usedParams brushParams crvData ptData s
|
||||
. ( KnownSplineType clo
|
||||
, Interpolatable usedParams
|
||||
, Diffy usedParams, Diffy brushParams
|
||||
, Diffy Double usedParams, Diffy Double brushParams
|
||||
, HasType ( ℝ 2 ) ptData
|
||||
, HasType ( CachedStroke s ) crvData
|
||||
, NFData ptData, NFData crvData
|
||||
|
@ -414,7 +415,7 @@ computeStrokeOutline fitParams ptParams toBrushParams brushFn spline@( Spline {
|
|||
outlineFunction
|
||||
:: forall usedParams brushParams crvData ptData
|
||||
. ( Interpolatable usedParams
|
||||
, Diffy usedParams, Diffy brushParams
|
||||
, Diffy Double usedParams, Diffy Double brushParams
|
||||
, HasType ( ℝ 2 ) ptData
|
||||
-- Debugging.
|
||||
, Show ptData, Show brushParams
|
||||
|
@ -456,8 +457,9 @@ outlineFunction ptParams toBrushParams brushFromParams sp0 crv =
|
|||
|
||||
D1 path_t path'_t _ = runD path t
|
||||
D1 params_t _ _ = runD usedParams t
|
||||
brush_t = value @brushParams
|
||||
$ runD brushFromParams ( fun toBrushParams params_t )
|
||||
brush_t = value @Double @brushParams
|
||||
$ runD brushFromParams
|
||||
$ fun toBrushParams params_t
|
||||
|
||||
in fwdBwd
|
||||
|
||||
|
@ -750,9 +752,10 @@ withTangent tgt_wanted spline@( Spline { splineStart } )
|
|||
--
|
||||
-- - \( p(t) \) is the path that the brush follows, and
|
||||
-- - \( b(t,s) \) is the brush shape, as it varies along the path.
|
||||
brushStroke :: D ( ℝ 1 ) ( ℝ 2 ) -- ^ stroke path \( p(t) \)
|
||||
-> D ( ℝ 2 ) ( ℝ 2 ) -- ^ brush \( b(t,s) \)
|
||||
-> D ( ℝ 2 ) ( ℝ 2 )
|
||||
brushStroke :: Module r ( T v )
|
||||
=> D ( ℝ 1 ) v -- ^ stroke path \( p(t) \)
|
||||
-> D ( ℝ 2 ) v -- ^ brush \( b(t,s) \)
|
||||
-> D ( ℝ 2 ) v
|
||||
brushStroke ( D1 p dpdt d2pdt2 ) ( D2 b dbdt dbds d2bdt2 d2bdtds d2bds2 ) =
|
||||
D2 ( unT $ T p ^+^ T b )
|
||||
-- c = p + b
|
||||
|
@ -770,27 +773,33 @@ brushStroke ( D1 p dpdt d2pdt2 ) ( D2 b dbdt dbds d2bdt2 d2bdtds d2bds2 ) =
|
|||
--
|
||||
-- \[ E = \frac{\partial c}{\partial t} \times \frac{\partial c}{\partial s} = 0, ]
|
||||
--
|
||||
-- as well as the vector
|
||||
-- together with the total derivative
|
||||
--
|
||||
-- \[ \frac{\partial E}{\partial s} \frac{\mathrm{d} c}{\mathrm{d} t} \]
|
||||
-- \[ \frac{\mathrm{d} c}{\mathrm{d} t}, \]
|
||||
--
|
||||
-- whose roots correspond to cusps in the envelope, and
|
||||
-- and the partial derivatives
|
||||
--
|
||||
-- \[ \frac{\partial E}{\partial s}. \]
|
||||
envelopeEquation :: D ( ℝ 2 ) ( ℝ 2 ) -> ( Double, T ( ℝ 2 ), Double, Double )
|
||||
-- \[ \frac{\partial E}{\partial s}, \qquad \frac{\partial E}{\partial s}. \]
|
||||
--
|
||||
-- NB: if \( \frac{\partial E}{\partial s} \) is zero, the total derivative is ill-defined.
|
||||
envelopeEquation :: ( D ( i ( ℝ 2 ) ) ~ D ( ℝ 2 )
|
||||
, Cross ( i Double ) ( T ( i ( ℝ 2 ) ) )
|
||||
, Fractional ( i Double )
|
||||
)
|
||||
=> D ( i ( ℝ 2 ) ) ( i ( ℝ 2 ) )
|
||||
-> ( i Double, T ( i ( ℝ 2 ) ), i Double, i Double )
|
||||
envelopeEquation ( D2 _ dcdt dcds d2cdt2 d2cdtds d2cds2 ) =
|
||||
let ee = dcdt `cross` dcds
|
||||
dEdt = d2cdt2 `cross` dcds + dcdt `cross` d2cdtds
|
||||
dEds = d2cdtds `cross` dcds + dcdt `cross` d2cds2
|
||||
tot = dcdt ^-^ ( dEdt / dEds ) *^ dcds --dEds *^ dcdt ^-^ dEdt *^ dcds
|
||||
tot = dcdt ^-^ ( dEdt / dEds ) *^ dcds
|
||||
in ( ee, tot, dEdt, dEds )
|
||||
-- Computation of total derivative dc/dt:
|
||||
--
|
||||
-- dc/dt = ∂c/∂t + ∂c/∂s ∂s/∂t
|
||||
-- ∂s/∂t = - ( ∂E / ∂t ) / ( ∂E / ∂s )
|
||||
-- ∂s/∂t = - ∂E/∂t / ∂E/∂s
|
||||
--
|
||||
-- ( ∂E / ∂s ) dc/dt = ( ∂E / ∂s ) ∂c/∂t - ( ∂E / ∂t ) ∂c/∂s.
|
||||
|
||||
-- ∂E/∂s dc/dt = ∂E/∂s ∂c/∂t - ∂E/∂t ∂c/∂s.
|
||||
|
||||
-- | Linear interpolation, as a differentiable function.
|
||||
line :: forall b. ( Module Double ( T b ), Torsor ( T b ) b )
|
||||
|
@ -906,9 +915,27 @@ solveEnvelopeEquations path_t path'_t ( fwdOffset, bwdOffset ) strokeData
|
|||
Nothing -> ( False, initialGuess )
|
||||
Just s0 -> ( True , s0 )
|
||||
in case f ( ℝ1 s ) of -- TODO: a bit redundant to have to compute this again...
|
||||
StrokeDatum { dstroke, dcdt } ->
|
||||
( good, ℝ1 s, value @( ℝ 2 ) dstroke, dcdt )
|
||||
|
||||
StrokeDatum { ee = _ee, dstroke, 𝛿E𝛿t = _𝛿E𝛿t, 𝛿E𝛿s, dcdt } ->
|
||||
-- The total derivative dc/dt is computed by dividing by ∂E/∂s,
|
||||
-- so check it isn't zero first. This corresponds to cusps in the envelope.
|
||||
let totDeriv
|
||||
| abs 𝛿E𝛿s < epsilon
|
||||
, let s' = if s >= 0.5 then s - 1e-9 else s + 1e-9
|
||||
= case f ( ℝ1 s' ) of { StrokeDatum { dcdt = dcdt_s' } -> dcdt_s' }
|
||||
| otherwise
|
||||
= dcdt
|
||||
in --trace
|
||||
-- ( unlines
|
||||
-- [ "solveEnvelopeEquations"
|
||||
-- , " t = " ++ show t
|
||||
-- , " s = " ++ show s
|
||||
-- , " c = " ++ show dstroke
|
||||
-- , " E = " ++ show _ee
|
||||
-- , " ∂E/∂t = " ++ show _𝛿E𝛿t
|
||||
-- , " ∂E/∂s = " ++ show 𝛿E𝛿s
|
||||
-- , " dc/dt = " ++ show totDeriv
|
||||
-- ] )
|
||||
( good, ℝ1 s, value @Double @( ℝ 2 ) dstroke, totDeriv )
|
||||
|
||||
eqn :: ( ℝ 1 -> StrokeDatum ) -> ( Double -> ( Double, Double ) )
|
||||
eqn f s =
|
||||
|
@ -930,7 +957,7 @@ instance Applicative ZipSeq where
|
|||
liftA2 f ( ZipSeq xs ) ( ZipSeq ys ) = ZipSeq ( Seq.zipWith f xs ys )
|
||||
|
||||
brushStrokeData :: forall brushParams
|
||||
. ( Diffy brushParams, Show brushParams )
|
||||
. ( Diffy Double brushParams, Show brushParams )
|
||||
=> ( ℝ 1 ~> ℝ 2 ) -- ^ path
|
||||
-> ( ℝ 1 ~> brushParams ) -- ^ brush parameters
|
||||
-> ( brushParams ~> SplinePts Closed ) -- ^ brush from parameters
|
||||
|
@ -947,7 +974,7 @@ brushStrokeData path params brush =
|
|||
splines :: Seq ( D brushParams ( ℝ 1 ~> ℝ 2 ) )
|
||||
!splines = getZipSeq $ traverse ( ZipSeq . splineCurveFns ) dbrush_params
|
||||
dbrushes_t :: Seq ( ℝ 1 -> D ( ℝ 2 ) ( ℝ 2 ) )
|
||||
!dbrushes_t = force $ fmap ( uncurryD' . ( dparams_t `chain` ) ) splines
|
||||
!dbrushes_t = force $ fmap ( uncurryD . ( dparams_t `chain` ) ) splines
|
||||
|
||||
in fmap ( mkStrokeDatum dpath_t ) dbrushes_t
|
||||
where
|
||||
|
@ -958,10 +985,11 @@ brushStrokeData path params brush =
|
|||
mkStrokeDatum dpath_t dbrush_t s =
|
||||
let dbrush_t_s = dbrush_t s
|
||||
dstroke@( D2 _c _𝛿c𝛿t _𝛿c𝛿s _ _ _ ) = brushStroke dpath_t dbrush_t_s
|
||||
( ee, dcdt, _𝛿E𝛿t, 𝛿E𝛿s ) = envelopeEquation dstroke
|
||||
( ee, dcdt, 𝛿E𝛿t, 𝛿E𝛿s ) = coerce $ envelopeEquation @Identity $ coerce dstroke
|
||||
in -- trace
|
||||
-- ( unlines
|
||||
-- [ "envelopeEquation:"
|
||||
-- , " t = " ++ show t
|
||||
-- , " s = " ++ show s
|
||||
-- , " c = " ++ show _c
|
||||
-- , " ∂c/∂t = " ++ show _𝛿c𝛿t
|
||||
|
@ -974,7 +1002,7 @@ brushStrokeData path params brush =
|
|||
{ dpath = dpath_t
|
||||
, dbrush = dbrush_t_s
|
||||
, dstroke
|
||||
, ee, dcdt, 𝛿E𝛿s }
|
||||
, ee, dcdt, 𝛿E𝛿t, 𝛿E𝛿s }
|
||||
|
||||
-- | The value and derivative of a brush stroke at a given coordinate
|
||||
-- \( (t_0, s_0) \), together with the value of the envelope equation at that
|
||||
|
@ -994,11 +1022,16 @@ data StrokeDatum
|
|||
--
|
||||
-- \[ E(t_0,s_0) = \left ( \frac{\partial c}{\partial t} \times \frac{\partial c}{\partial s} \right )_{(t_0,s_0)}. \]
|
||||
, ee :: Double
|
||||
-- | \( \left ( \frac{\partial E}{\partial s} \right )_{(t_0,s_0)}. \)
|
||||
, 𝛿E𝛿s :: Double
|
||||
-- | \( \left ( \frac{\partial E}{\partial t} \right )_{(t_0,s_0)}. \)
|
||||
, 𝛿E𝛿t :: Double
|
||||
-- | Total derivative
|
||||
--
|
||||
-- \[ \left ( \frac{\mathrm{d} c}{\mathrm{d} t} \right )_{(t_0,s_0)}. \]
|
||||
, dcdt :: T ( ℝ 2 )
|
||||
-- | \( \left ( \frac{\partial E}{\partial s} \right )_{(t_0,s_0)}. \)
|
||||
, 𝛿E𝛿s :: Double
|
||||
--
|
||||
-- This is ill-defined when \( \frac{\partial E}{\partial s} = 0 \).
|
||||
, dcdt :: T ( ℝ 2 )
|
||||
|
||||
}
|
||||
deriving stock Show
|
||||
|
|
|
@ -12,6 +12,9 @@ module Math.Linear
|
|||
, Fin(..), eqFin, MFin(..)
|
||||
, Dim, Representable(..), injection, projection
|
||||
, Vec(..), (!), find
|
||||
|
||||
-- * Intervals
|
||||
, 𝕀, 𝕀ℝ
|
||||
) where
|
||||
|
||||
-- base
|
||||
|
@ -44,6 +47,10 @@ import Data.Group
|
|||
import Data.Group.Generics
|
||||
( )
|
||||
|
||||
-- rounded-hw
|
||||
import Numeric.Rounded.Hardware.Interval.NonEmpty
|
||||
( Interval )
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
data Mat22 = Mat22 !Double !Double !Double !Double
|
||||
|
@ -171,24 +178,24 @@ type family Dim v
|
|||
|
||||
type instance Dim ( ℝ n ) = n
|
||||
|
||||
type Representable :: Type -> Constraint
|
||||
class Representable v where
|
||||
tabulate :: ( Fin ( Dim v ) -> Double ) -> v
|
||||
index :: v -> Fin ( Dim v ) -> Double
|
||||
type Representable :: Type -> Type -> Constraint
|
||||
class Representable r v | v -> r where
|
||||
tabulate :: ( Fin ( Dim v ) -> r ) -> v
|
||||
index :: v -> Fin ( Dim v ) -> r
|
||||
|
||||
instance Representable ( ℝ 0 ) where
|
||||
instance Representable Double ( ℝ 0 ) where
|
||||
{-# INLINE tabulate #-}
|
||||
tabulate _ = ℝ0
|
||||
{-# INLINE index #-}
|
||||
index _ _ = 0
|
||||
|
||||
instance Representable ( ℝ 1 ) where
|
||||
instance Representable Double ( ℝ 1 ) where
|
||||
{-# INLINE tabulate #-}
|
||||
tabulate f = ℝ1 ( f ( Fin 1## ) )
|
||||
{-# INLINE index #-}
|
||||
index ( ℝ1 x ) _ = x
|
||||
|
||||
instance Representable ( ℝ 2 ) where
|
||||
instance Representable Double ( ℝ 2 ) where
|
||||
{-# INLINE tabulate #-}
|
||||
tabulate f = ℝ2 ( f ( Fin 1## ) ) ( f ( Fin 2## ) )
|
||||
{-# INLINE index #-}
|
||||
|
@ -196,7 +203,7 @@ instance Representable ( ℝ 2 ) where
|
|||
Fin 1## -> x
|
||||
_ -> y
|
||||
|
||||
instance Representable ( ℝ 3 ) where
|
||||
instance Representable Double ( ℝ 3 ) where
|
||||
{-# INLINE tabulate #-}
|
||||
tabulate f = ℝ3 ( f ( Fin 1## ) ) ( f ( Fin 2## ) ) ( f ( Fin 3## ) )
|
||||
{-# INLINE index #-}
|
||||
|
@ -206,14 +213,14 @@ instance Representable ( ℝ 3 ) where
|
|||
_ -> z
|
||||
|
||||
{-# INLINE projection #-}
|
||||
projection :: ( Representable u, Representable v )
|
||||
projection :: ( Representable r u, Representable r v )
|
||||
=> ( Fin ( Dim v ) -> Fin ( Dim u ) )
|
||||
-> u -> v
|
||||
projection f = \ u ->
|
||||
tabulate \ i -> index u ( f i )
|
||||
|
||||
{-# INLINE injection #-}
|
||||
injection :: ( Representable u, Representable v )
|
||||
injection :: ( Representable r u, Representable r v )
|
||||
=> ( Fin ( Dim v ) -> MFin ( Dim u ) )
|
||||
-> u -> v -> v
|
||||
injection f = \ u v ->
|
||||
|
@ -242,3 +249,9 @@ find eq v b = MFin ( go 1## v )
|
|||
| otherwise
|
||||
= go ( j `plusWord#` 1## ) as
|
||||
go _ VZ = 0##
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
-- Intervals.
|
||||
|
||||
type 𝕀 = Interval
|
||||
type 𝕀ℝ n = 𝕀 ( ℝ n )
|
||||
|
|
|
@ -11,6 +11,8 @@ import Control.Applicative
|
|||
( liftA2 )
|
||||
import Data.Coerce
|
||||
( coerce )
|
||||
import Data.Functor.Identity
|
||||
( Identity(..) )
|
||||
import Data.Kind
|
||||
( Type, Constraint )
|
||||
import GHC.Generics
|
||||
|
@ -28,11 +30,12 @@ type (~>) :: Type -> Type -> Type
|
|||
newtype u ~> v = D { runD :: u -> D u v }
|
||||
deriving stock instance Functor ( D u ) => Functor ( (~>) u )
|
||||
|
||||
instance ( Applicative ( D u ), Module ( D u Double ) ( D u v ) ) => Module Double ( T ( u ~> v ) ) where
|
||||
origin = T $ D \ _ -> origin
|
||||
T ( D f ) ^+^ T ( D g ) = T $ D \ t -> f t ^+^ g t
|
||||
T ( D f ) ^-^ T ( D g ) = T $ D \ t -> f t ^-^ g t
|
||||
a *^ T ( D f ) = T $ D \ t -> pure a *^ f t
|
||||
instance ( Applicative ( D u ), Module r ( T v ) )
|
||||
=> Module r ( T ( u ~> v ) ) where
|
||||
origin = T $ D \ _ -> pure $ coerce $ origin @r @( T v )
|
||||
T ( D f ) ^+^ T ( D g ) = T $ D \ t -> liftA2 ( coerce $ (^+^) @r @( T v ) ) ( f t ) ( g t )
|
||||
T ( D f ) ^-^ T ( D g ) = T $ D \ t -> liftA2 ( coerce $ (^-^) @r @( T v ) ) ( f t ) ( g t )
|
||||
a *^ T ( D f ) = T $ D \ t -> fmap ( coerce $ (*^) @r @( T v ) a ) $ f t
|
||||
|
||||
-- | @D ( ℝ n ) v@ is \( \mathbb{R}[x_1, \ldots, x_n]/(x_1, \ldots, x_n)^3 \otimes_\mathbb{R} v \)
|
||||
type D :: Type -> Type -> Type
|
||||
|
@ -42,6 +45,9 @@ type instance D ( ℝ 1 ) = Dℝ1
|
|||
type instance D ( ℝ 2 ) = Dℝ2
|
||||
type instance D ( ℝ 3 ) = Dℝ3
|
||||
|
||||
type instance D ( Identity a ) = D a
|
||||
type instance D ( 𝕀 u ) = D u
|
||||
|
||||
newtype Dℝ0 v = D0 { v :: v }
|
||||
deriving stock ( Show, Eq, Functor, Foldable, Traversable, Generic, Generic1 )
|
||||
deriving newtype ( Num, Fractional, Floating )
|
||||
|
@ -67,7 +73,7 @@ instance Num ( Dℝ1 Double ) where
|
|||
(+) = liftA2 (+)
|
||||
(-) = liftA2 (-)
|
||||
negate = fmap negate
|
||||
fromInteger = konst @( ℝ 1 ) . fromInteger
|
||||
fromInteger = konst @Double @( ℝ 1 ) . fromInteger
|
||||
|
||||
abs = error "no"
|
||||
signum = error "no"
|
||||
|
@ -82,7 +88,7 @@ instance Num ( Dℝ2 Double ) where
|
|||
(+) = liftA2 (+)
|
||||
(-) = liftA2 (-)
|
||||
negate = fmap negate
|
||||
fromInteger = konst @( ℝ 2 ) . fromInteger
|
||||
fromInteger = konst @Double @( ℝ 2 ) . fromInteger
|
||||
|
||||
abs = error "no"
|
||||
signum = error "no"
|
||||
|
@ -101,7 +107,7 @@ instance Num ( Dℝ3 Double ) where
|
|||
(+) = liftA2 (+)
|
||||
(-) = liftA2 (-)
|
||||
negate = fmap negate
|
||||
fromInteger = konst @( ℝ 3 ) . fromInteger
|
||||
fromInteger = konst @Double @( ℝ 3 ) . fromInteger
|
||||
|
||||
abs = error "no"
|
||||
signum = error "no"
|
||||
|
@ -146,9 +152,9 @@ instance Module Double ( T v ) => Module ( Dℝ3 Double ) ( Dℝ3 v ) where
|
|||
|
||||
instance Fractional ( Dℝ1 Double ) where
|
||||
(/) = error "I haven't yet defined (/) for Dℝ1"
|
||||
fromRational = konst @( ℝ 1 ) . fromRational
|
||||
fromRational = konst @Double @( ℝ 1 ) . fromRational
|
||||
instance Floating ( Dℝ1 Double ) where
|
||||
pi = konst @( ℝ 1 ) pi
|
||||
pi = konst @Double @( ℝ 1 ) pi
|
||||
sin ( D1 v ( T dx ) ( T ddx ) )
|
||||
= let !s = sin v
|
||||
!c = cos v
|
||||
|
@ -161,9 +167,9 @@ instance Floating ( Dℝ1 Double ) where
|
|||
|
||||
instance Fractional ( Dℝ2 Double ) where
|
||||
(/) = error "I haven't yet defined (/) for Dℝ2"
|
||||
fromRational = konst @( ℝ 2 ) . fromRational
|
||||
fromRational = konst @Double @( ℝ 2 ) . fromRational
|
||||
instance Floating ( Dℝ2 Double ) where
|
||||
pi = konst @( ℝ 2 ) pi
|
||||
pi = konst @Double @( ℝ 2 ) pi
|
||||
sin ( D2 v ( T dx ) ( T dy ) ( T ddx ) ( T dxdy ) ( T ddy ) )
|
||||
= let !s = sin v
|
||||
!c = cos v
|
||||
|
@ -184,9 +190,9 @@ instance Floating ( Dℝ2 Double ) where
|
|||
|
||||
instance Fractional ( Dℝ3 Double ) where
|
||||
(/) = error "I haven't yet defined (/) for Dℝ3"
|
||||
fromRational = konst @( ℝ 3 ) . fromRational
|
||||
fromRational = konst @Double @( ℝ 3 ) . fromRational
|
||||
instance Floating ( Dℝ3 Double ) where
|
||||
pi = konst @( ℝ 3 ) pi
|
||||
pi = konst @Double @( ℝ 3 ) pi
|
||||
sin ( D3 v ( T dx ) ( T dy ) ( T dz ) ( T ddx ) ( T dxdy ) ( T ddy ) ( T dxdz ) ( T dydz ) ( T ddz ) )
|
||||
= let !s = sin v
|
||||
!c = cos v
|
||||
|
@ -213,30 +219,24 @@ instance Floating ( Dℝ3 Double ) where
|
|||
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
uncurryD :: ( ℝ 1 ~> ℝ 1 ~> b ) -> ( ℝ 2 ~> b )
|
||||
uncurryD ( D b ) = D \ ( ℝ2 t0 s0 ) -> uncurryD' ( b ( ℝ1 t0 ) ) ( ℝ1 s0 )
|
||||
|
||||
uncurryD' :: D ( ℝ 1 ) ( ℝ 1 ~> b ) -> ℝ 1 -> D ( ℝ 2 ) b
|
||||
uncurryD' ( D1 ( D b_t0 ) ( T ( D dbdt_t0 ) ) ( T ( D d2bdt2_t0 ) ) ) ( ℝ1 s0 ) =
|
||||
let !( D1 b_t0s0 dbds_t0s0 d2bds2_t0s0 ) = b_t0 ( ℝ1 s0 )
|
||||
!( D1 dbdt_t0s0 d2bdtds_t0s0 _ ) = dbdt_t0 ( ℝ1 s0 )
|
||||
!( D1 d2bdt2_t0s0 _ _ ) = d2bdt2_t0 ( ℝ1 s0 )
|
||||
uncurryD :: D a ~ D ( ℝ 1 )
|
||||
=> D ( ℝ 1 ) ( a ~> b ) -> a -> D ( ℝ 2 ) b
|
||||
uncurryD ( D1 ( D b_t0 ) ( T ( D dbdt_t0 ) ) ( T ( D d2bdt2_t0 ) ) ) s0 =
|
||||
let !( D1 b_t0s0 dbds_t0s0 d2bds2_t0s0 ) = b_t0 s0
|
||||
!( D1 dbdt_t0s0 d2bdtds_t0s0 _ ) = dbdt_t0 s0
|
||||
!( D1 d2bdt2_t0s0 _ _ ) = d2bdt2_t0 s0
|
||||
in D2 b_t0s0 ( T dbdt_t0s0 ) dbds_t0s0 ( T d2bdt2_t0s0 ) d2bdtds_t0s0 d2bds2_t0s0
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
type Diffy :: Type -> Constraint
|
||||
class ( Applicative ( D v )
|
||||
, Traversable ( D v )
|
||||
, Module Double ( T v ) )
|
||||
=> Diffy v where
|
||||
chain :: ( Module Double ( T w ) )
|
||||
=> D ( ℝ 1 ) v -> D v w -> D ( ℝ 1 ) w
|
||||
konst :: Module Double ( T w ) => w -> D v w
|
||||
value :: D v w -> w
|
||||
linear :: Module Double ( T w ) => ( v -> w ) -> ( v ~> w )
|
||||
type Diffy :: Type -> Type -> Constraint
|
||||
class ( Traversable ( D v ), Module r ( T v ) ) => Diffy r v where
|
||||
chain :: ( Module r ( T w ) ) => D ( ℝ 1 ) v -> D v w -> D ( ℝ 1 ) w
|
||||
konst :: Module r ( T w ) => w -> D v w
|
||||
value :: D v w -> w
|
||||
linear :: Module r ( T w ) => ( v -> w ) -> ( v ~> w )
|
||||
|
||||
chainRule :: ( Diffy v, Module Double ( T w ) )
|
||||
chainRule :: ( Diffy r v, Module r ( T w ) )
|
||||
=> ( ( ℝ 1 ) ~> v ) -> ( v ~> w ) -> ( ( ℝ 1 ) ~> w )
|
||||
chainRule ( D df ) ( D dg ) =
|
||||
D \ x ->
|
||||
|
@ -245,15 +245,16 @@ chainRule ( D df ) ( D dg ) =
|
|||
chain df_x ( dg f_x )
|
||||
|
||||
-- | Recover the underlying function, discarding all infinitesimal information.
|
||||
fun :: forall v w. Diffy v => ( v ~> w ) -> ( v -> w )
|
||||
fun ( D df ) = value @v . df
|
||||
fun :: forall v w r. Diffy r v => ( v ~> w ) -> ( v -> w )
|
||||
fun ( D df ) = value @r @v . df
|
||||
{-# INLINE fun #-}
|
||||
|
||||
var :: ( Representable u, Diffy u ) => Fin ( Dim u ) -> ( u ~> Double )
|
||||
var :: forall u r. ( Module r ( T r ), Representable r u, Diffy r u )
|
||||
=> Fin ( Dim u ) -> ( u ~> r )
|
||||
var i = linear ( `index` i )
|
||||
{-# INLINE var #-}
|
||||
|
||||
instance Diffy ( ℝ 0 ) where
|
||||
instance Diffy Double ( ℝ 0 ) where
|
||||
chain _ ( D0 w ) = D1 w origin origin
|
||||
{-# INLINE chain #-}
|
||||
konst k = D0 k
|
||||
|
@ -263,7 +264,7 @@ instance Diffy ( ℝ 0 ) where
|
|||
linear f = D \ _ -> D0 ( f ℝ0 )
|
||||
{-# INLINE linear #-}
|
||||
|
||||
instance Diffy ( ℝ 1 ) where
|
||||
instance Diffy Double ( ℝ 1 ) where
|
||||
chain ( D1 _ ( T ( ℝ1 x' ) ) ( T ( ℝ1 x'' ) ) ) ( D1 v g_x g_xx )
|
||||
= D1 v
|
||||
( x' *^ g_x )
|
||||
|
@ -276,7 +277,7 @@ instance Diffy ( ℝ 1 ) where
|
|||
linear f = D \ u -> D1 ( f u ) ( T $ f u ) origin
|
||||
{-# INLINE linear #-}
|
||||
|
||||
instance Diffy ( ℝ 2 ) where
|
||||
instance Diffy Double ( ℝ 2 ) where
|
||||
chain ( D1 _ ( T ( ℝ2 x' y' ) ) ( T ( ℝ2 x'' y'' ) ) ) ( D2 v g_x g_y g_xx g_xy g_yy )
|
||||
= D1 v
|
||||
( x' *^ g_x ^+^ y' *^ g_y )
|
||||
|
@ -294,7 +295,7 @@ instance Diffy ( ℝ 2 ) where
|
|||
origin origin origin
|
||||
{-# INLINE linear #-}
|
||||
|
||||
instance Diffy ( ℝ 3 ) where
|
||||
instance Diffy Double ( ℝ 3 ) where
|
||||
chain ( D1 _ ( T ( ℝ3 x' y' z' ) ) ( T ( ℝ3 x'' y'' z'' ) ) )
|
||||
( D3 v g_x g_y g_z g_xx g_xy g_yy g_xz g_yz g_zz )
|
||||
= D1 v
|
||||
|
|
|
@ -4,12 +4,12 @@
|
|||
|
||||
module Math.Module
|
||||
( Module(..), lerp
|
||||
, Inner(..)
|
||||
, Inner(..), Cross(..)
|
||||
, Interpolatable
|
||||
, norm, squaredNorm, quadrance, distance
|
||||
, proj, projC, closestPointOnSegment
|
||||
, cross
|
||||
, strictlyParallel, convexCombination
|
||||
, 𝕀
|
||||
)
|
||||
where
|
||||
|
||||
|
@ -18,6 +18,10 @@ import Control.Applicative
|
|||
( liftA2 )
|
||||
import Control.Monad
|
||||
( guard )
|
||||
import Data.Coerce
|
||||
( coerce )
|
||||
import Data.Functor.Identity
|
||||
( Identity(..) )
|
||||
import Data.Kind
|
||||
( Type, Constraint )
|
||||
import Data.Monoid
|
||||
|
@ -31,6 +35,14 @@ import Data.Act
|
|||
( (-->) )
|
||||
)
|
||||
|
||||
-- rounded-hw
|
||||
import Numeric.Rounded.Hardware
|
||||
( Rounded(..) )
|
||||
import Numeric.Rounded.Hardware.Interval.NonEmpty
|
||||
( Interval(..) )
|
||||
import Numeric.Rounded.Hardware.Class
|
||||
( intervalAdd, intervalSub, intervalMul )
|
||||
|
||||
-- MetaBrush
|
||||
import Math.Epsilon
|
||||
( epsilon )
|
||||
|
@ -69,6 +81,9 @@ infixl 8 ^.^
|
|||
class Module r m => Inner r m where
|
||||
(^.^) :: m -> m -> r
|
||||
|
||||
class Module r m => Cross r m where
|
||||
cross :: m -> m -> r
|
||||
|
||||
-- | Norm of a vector, computed using the inner product.
|
||||
norm :: forall m r. ( Floating r, Inner r m ) => m -> r
|
||||
norm = sqrt . squaredNorm
|
||||
|
@ -114,8 +129,8 @@ closestPointOnSegment c ( Segment p0 p1 )
|
|||
|
||||
-- | A convenient constraint synonym for types that support interpolation.
|
||||
type Interpolatable :: Type -> Constraint
|
||||
class ( Torsor ( T r ) r, Module Double ( T r ) ) => Interpolatable r
|
||||
instance ( Torsor ( T r ) r, Module Double ( T r ) ) => Interpolatable r
|
||||
class ( Torsor ( T u ) u, Module Double ( T u ) ) => Interpolatable u
|
||||
instance ( Torsor ( T u ) u, Module Double ( T u ) ) => Interpolatable u
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
|
@ -158,9 +173,18 @@ instance Module Double ( T ( ℝ 3 ) ) where
|
|||
instance Inner Double ( T ( ℝ 2 ) ) where
|
||||
V2 x1 y1 ^.^ V2 x2 y2 = x1 * x2 + y1 * y2
|
||||
|
||||
-- | Cross-product of two 2D vectors.
|
||||
cross :: T ( ℝ 2 ) -> T ( ℝ 2 ) -> Double
|
||||
cross ( V2 x1 y1 ) ( V2 x2 y2 ) = x1 * y2 - x2 * y1
|
||||
instance Cross Double ( T ( ℝ 2 ) ) where
|
||||
cross ( V2 x1 y1 ) ( V2 x2 y2 ) = x1 * y2 - x2 * y1
|
||||
|
||||
instance Module r ( T m ) => Module ( Identity r ) ( T ( Identity m ) ) where
|
||||
origin = coerce $ origin @r @( T m )
|
||||
(^+^) = coerce $ (^+^) @r @( T m )
|
||||
(^-^) = coerce $ (^-^) @r @( T m )
|
||||
(*^) = coerce $ (*^) @r @( T m )
|
||||
instance Inner r ( T m ) => Inner ( Identity r ) ( T ( Identity m ) ) where
|
||||
(^.^) = coerce $ (^.^) @r @( T m )
|
||||
instance Cross r ( T m ) => Cross ( Identity r ) ( T ( Identity m ) ) where
|
||||
cross = coerce $ cross @r @( T m )
|
||||
|
||||
-- | Compute whether two vectors point in the same direction,
|
||||
-- that is, whether each vector is a (strictly) positive multiple of the other.
|
||||
|
@ -199,3 +223,39 @@ convexCombination v0 v1 u
|
|||
c0, c10 :: Double
|
||||
c0 = v0 `cross` u
|
||||
c10 = ( v0 ^-^ v1 ) `cross` u
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
-- Interval arithmetic using rounded-hw library.
|
||||
|
||||
instance Module ( 𝕀 Double ) ( T ( 𝕀ℝ 2 ) ) where
|
||||
origin = T ( I ( Rounded ( ℝ2 0 0 ) ) ( Rounded ( ℝ2 0 0 ) ) )
|
||||
T ( I ( Rounded ( ℝ2 x1_lo y1_lo ) ) ( Rounded ( ℝ2 x1_hi y1_hi ) ) ) ^+^
|
||||
T ( I ( Rounded ( ℝ2 x2_lo y2_lo ) ) ( Rounded ( ℝ2 x2_hi y2_hi ) ) )
|
||||
= let !( Rounded x_lo, Rounded x_hi ) = intervalAdd ( Rounded x1_lo ) ( Rounded x1_hi ) ( Rounded x2_lo ) ( Rounded x2_hi )
|
||||
!( Rounded y_lo, Rounded y_hi ) = intervalAdd ( Rounded y1_lo ) ( Rounded y1_hi ) ( Rounded y2_lo ) ( Rounded y2_hi )
|
||||
in T ( I ( Rounded ( ℝ2 x_lo y_lo ) ) ( Rounded ( ℝ2 x_hi y_hi ) ) )
|
||||
T ( I ( Rounded ( ℝ2 x1_lo y1_lo ) ) ( Rounded ( ℝ2 x1_hi y1_hi ) ) ) ^-^
|
||||
T ( I ( Rounded ( ℝ2 x2_lo y2_lo ) ) ( Rounded ( ℝ2 x2_hi y2_hi ) ) )
|
||||
= let !( Rounded x_lo, Rounded x_hi ) = intervalSub ( Rounded x1_lo ) ( Rounded x1_hi ) ( Rounded x2_lo ) ( Rounded x2_hi )
|
||||
!( Rounded y_lo, Rounded y_hi ) = intervalSub ( Rounded y1_lo ) ( Rounded y1_hi ) ( Rounded y2_lo ) ( Rounded y2_hi )
|
||||
in T ( I ( Rounded ( ℝ2 x_lo y_lo ) ) ( Rounded ( ℝ2 x_hi y_hi ) ) )
|
||||
I ( Rounded k_lo ) ( Rounded k_hi ) *^ T ( I ( Rounded ( ℝ2 x1_lo y1_lo ) ) ( Rounded ( ℝ2 x1_hi y1_hi ) ) )
|
||||
= let !( Rounded x_lo, Rounded x_hi ) = intervalMul ( Rounded k_lo ) ( Rounded k_hi ) ( Rounded x1_lo ) ( Rounded x1_hi )
|
||||
!( Rounded y_lo, Rounded y_hi ) = intervalMul ( Rounded k_lo ) ( Rounded k_hi ) ( Rounded y1_lo ) ( Rounded y1_hi )
|
||||
in T ( I ( Rounded ( ℝ2 x_lo y_lo ) ) ( Rounded ( ℝ2 x_hi y_hi ) ) )
|
||||
|
||||
instance Inner ( 𝕀 Double ) ( T ( 𝕀ℝ 2 ) ) where
|
||||
T ( I ( Rounded ( ℝ2 x1_lo y1_lo ) ) ( Rounded ( ℝ2 x1_hi y1_hi ) ) ) ^.^
|
||||
T ( I ( Rounded ( ℝ2 x2_lo y2_lo ) ) ( Rounded ( ℝ2 x2_hi y2_hi ) ) )
|
||||
= let !( x_lo, x_hi ) = intervalMul ( Rounded x1_lo ) ( Rounded x1_hi ) ( Rounded x2_lo ) ( Rounded x2_hi )
|
||||
!( y_lo, y_hi ) = intervalMul ( Rounded y1_lo ) ( Rounded y1_hi ) ( Rounded y2_lo ) ( Rounded y2_hi )
|
||||
!( z_lo, z_hi ) = intervalAdd x_lo x_hi y_lo y_hi
|
||||
in I z_lo z_hi
|
||||
|
||||
instance Cross ( 𝕀 Double ) ( T ( 𝕀ℝ 2 ) ) where
|
||||
T ( I ( Rounded ( ℝ2 x1_lo y1_lo ) ) ( Rounded ( ℝ2 x1_hi y1_hi ) ) ) `cross`
|
||||
T ( I ( Rounded ( ℝ2 x2_lo y2_lo ) ) ( Rounded ( ℝ2 x2_hi y2_hi ) ) )
|
||||
= let !( x_lo, x_hi ) = intervalMul ( Rounded x1_lo ) ( Rounded x1_hi ) ( Rounded y2_lo ) ( Rounded y2_hi )
|
||||
!( y_lo, y_hi ) = intervalMul ( Rounded x2_lo ) ( Rounded x2_hi ) ( Rounded y1_lo ) ( Rounded y1_hi )
|
||||
!( z_lo, z_hi ) = intervalSub x_lo x_hi y_lo y_hi
|
||||
in I z_lo z_hi
|
||||
|
|
Loading…
Reference in a new issue