mirror of
https://gitlab.com/sheaf/metabrush.git
synced 2024-11-23 15:34:06 +00:00
Implement adaptive shaving algorithm
This commit is contained in:
parent
01fdd9a126
commit
ced714987e
|
@ -110,8 +110,7 @@ main = do
|
||||||
putStrLn $ unlines
|
putStrLn $ unlines
|
||||||
[ replicate 40 '='
|
[ replicate 40 '='
|
||||||
, "Best time: " ++ show bestTime ++ "s"
|
, "Best time: " ++ show bestTime ++ "s"
|
||||||
, "Best parameters:"
|
, "Best parameters: " ++ show (testName bestTest)
|
||||||
--, show (testCuspOptions bestTest)
|
|
||||||
]
|
]
|
||||||
|
|
||||||
benchTestCase :: TestCase -> IO Double
|
benchTestCase :: TestCase -> IO Double
|
||||||
|
@ -181,9 +180,15 @@ testCases = benchCases
|
||||||
|
|
||||||
benchCases :: [ TestCase ]
|
benchCases :: [ TestCase ]
|
||||||
benchCases =
|
benchCases =
|
||||||
[ ellipseTestCase opts "full" ( 0, 1 ) pi $ defaultStartBoxes [ 2 ] ] -- [ 0 .. 3 ] ]
|
[ ellipseTestCase opts ("minWidth=" ++ show minWidth ++ ",ε=" ++ show narrowAbs) ( 0, 1 ) pi $ defaultStartBoxes [ 2 ]
|
||||||
where
|
| minWidth <- [ 1e-5 ]
|
||||||
opts = defaultRootIsolationOptions
|
, narrowAbs <- [ 1e-5, 1e-4, 1e-3, 5e-3, 8e-3, 1e-2, 2e-2, 3e-2, 4e-2, 5e-2, 1e-1 ]
|
||||||
|
, let opts =
|
||||||
|
RootIsolationOptions
|
||||||
|
{ minWidth
|
||||||
|
, cuspFindingAlgorithms = defaultRootIsolationAlgorithms minWidth narrowAbs
|
||||||
|
}
|
||||||
|
]
|
||||||
|
|
||||||
--------------------------------------------------------------------------------
|
--------------------------------------------------------------------------------
|
||||||
|
|
||||||
|
|
|
@ -55,7 +55,8 @@ import Data.Semigroup
|
||||||
import Numeric
|
import Numeric
|
||||||
( showFFloat )
|
( showFFloat )
|
||||||
import GHC.TypeNats
|
import GHC.TypeNats
|
||||||
( Nat, KnownNat )
|
( Nat, KnownNat
|
||||||
|
, type (<=) )
|
||||||
|
|
||||||
-- containers
|
-- containers
|
||||||
import Data.Tree
|
import Data.Tree
|
||||||
|
@ -285,10 +286,10 @@ defaultGaussSeidelOptions =
|
||||||
|
|
||||||
defaultBisectionOptions
|
defaultBisectionOptions
|
||||||
:: forall n d
|
:: forall n d
|
||||||
. BoxCt n d
|
. ( 1 <= n, BoxCt n d )
|
||||||
=> Double -> Double
|
=> Double -> Double
|
||||||
-> Box n -> BisectionOptions n d
|
-> Box n -> BisectionOptions n d
|
||||||
defaultBisectionOptions _minWidth _narrowAbs box =
|
defaultBisectionOptions minWidth _narrowAbs box =
|
||||||
BisectionOptions
|
BisectionOptions
|
||||||
{ canHaveSols =
|
{ canHaveSols =
|
||||||
\ eqs box' ->
|
\ eqs box' ->
|
||||||
|
@ -320,21 +321,20 @@ defaultBisectionOptions _minWidth _narrowAbs box =
|
||||||
|
|
||||||
-- First, check if the largest dimension is over 10 times larger
|
-- First, check if the largest dimension is over 10 times larger
|
||||||
-- than the smallest dimension; if so bisect along that coordinate.
|
-- than the smallest dimension; if so bisect along that coordinate.
|
||||||
--
|
|
||||||
-- TODO: filter out dimensions smaller than minimum width.
|
|
||||||
in case sortOnArg ( width . coordInterval ) datPerCoord of
|
in case sortOnArg ( width . coordInterval ) datPerCoord of
|
||||||
[] -> error "dimension 0"
|
[] -> error "impossible: dimension 0"
|
||||||
[Arg _ d] -> (coordIndex d, "")
|
[Arg _ d] -> (coordIndex d, "")
|
||||||
Arg w0 _ : ds ->
|
Arg w0 _ : ds ->
|
||||||
let Arg w1 d1 = last ds
|
let Arg w1 d1 = last ds
|
||||||
in if w1 >= 10 * w0
|
in if w1 >= 10 * w0
|
||||||
then ( coordIndex d1, "tooWide")
|
then ( coordIndex d1, "tooWide" )
|
||||||
-- Otherwise, pick the dimension with the largest spread = width * Jacobian column norm
|
-- Otherwise, pick the dimension with the largest spread = width * Jacobian column norm
|
||||||
else case sortOnArg ( Dual . spread ) datPerCoord of
|
else case filter ( not . isTooSmall ) $ sortOnArg ( Dual . spread ) datPerCoord of
|
||||||
[] -> error "dimension 0"
|
[] -> ( coordIndex d1, "tooWide'" )
|
||||||
Arg _ d : _ ->
|
Arg _ d : _ -> ( coordIndex d, "spread" )
|
||||||
(coordIndex d, "spread")
|
|
||||||
}
|
}
|
||||||
|
where
|
||||||
|
isTooSmall ( Arg ( Dual w ) _ ) = w < minWidth
|
||||||
{-# INLINEABLE defaultBisectionOptions #-}
|
{-# INLINEABLE defaultBisectionOptions #-}
|
||||||
|
|
||||||
sortOnArg :: Ord b => (a -> b) -> [a] -> [Arg b a]
|
sortOnArg :: Ord b => (a -> b) -> [a] -> [Arg b a]
|
||||||
|
@ -494,7 +494,7 @@ bisect canHaveSols ( fallbackDim, why ) box =
|
||||||
( oks, ("cd = " ++ show i, mid ) )
|
( oks, ("cd = " ++ show i, mid ) )
|
||||||
Nothing ->
|
Nothing ->
|
||||||
case bisectInCoord box fallbackDim of
|
case bisectInCoord box fallbackDim of
|
||||||
( mid, (lo, hi) ) ->
|
( mid, ( lo, hi ) ) ->
|
||||||
( [ lo, hi ], ( why, mid ) )
|
( [ lo, hi ], ( why, mid ) )
|
||||||
where
|
where
|
||||||
solsList =
|
solsList =
|
||||||
|
@ -673,30 +673,27 @@ makeBox2Consistent
|
||||||
-> Box2Options n d
|
-> Box2Options n d
|
||||||
-> ( 𝕀ℝ n -> D 1 ( 𝕀ℝ n ) ( 𝕀ℝ d ) )
|
-> ( 𝕀ℝ n -> D 1 ( 𝕀ℝ n ) ( 𝕀ℝ d ) )
|
||||||
-> Box n -> Box n
|
-> Box n -> Box n
|
||||||
makeBox2Consistent minWidth (Box2Options epsEq lambdaMin coordsToNarrow eqsToUse) eqs x0
|
makeBox2Consistent minWidth (Box2Options ε_eq λMin coordsToNarrow eqsToUse) eqs x0
|
||||||
= ( `State.evalState` False ) $ doLoop 0.25 x0
|
= ( `State.evalState` False ) $ doLoop 0.25 x0
|
||||||
where
|
where
|
||||||
box1Options :: Box1Options n d
|
box1Options :: Box1Options n d
|
||||||
box1Options = Box1Options epsEq coordsToNarrow eqsToUse
|
box1Options = Box1Options ε_eq coordsToNarrow eqsToUse
|
||||||
doBox1 :: Box n -> [ Box n ]
|
doBox1 :: Box n -> [ Box n ]
|
||||||
doBox1 = makeBox1Consistent minWidth box1Options eqs
|
doBox1 = makeBox1Consistent minWidth box1Options eqs
|
||||||
doLoop :: Double -> Box n -> State Bool ( Box n )
|
doLoop :: Double -> Box n -> State Bool ( Box n )
|
||||||
doLoop lambda x = do
|
doLoop λ x = do
|
||||||
x'' <- forEachDim @n x $ \ i ->
|
x'' <- forEachDim @n x $ boundConsistency λ
|
||||||
boundConsistency ( `index` i ) ( set i ) lambda
|
|
||||||
modified <- State.get
|
modified <- State.get
|
||||||
let lambda' = if modified then lambda else 0.5 * lambda
|
let λ' = if modified then λ else 0.5 * λ
|
||||||
if lambda' < lambdaMin
|
if λ' < λMin
|
||||||
then return x''
|
then return x''
|
||||||
else do { State.put False ; doLoop lambda' x'' }
|
else do { State.put False ; doLoop λ' x'' }
|
||||||
|
|
||||||
boundConsistency :: ( Box n -> 𝕀 Double )
|
boundConsistency :: Double -> Fin n -> Box n -> State Bool ( Box n )
|
||||||
-> ( 𝕀 Double -> Box n -> Box n )
|
boundConsistency λ i box = do
|
||||||
-> Double -> Box n -> State Bool ( Box n )
|
|
||||||
boundConsistency getter setter lambda box = do
|
|
||||||
let x@( 𝕀 x_inf x_sup ) = getter box
|
let x@( 𝕀 x_inf x_sup ) = getter box
|
||||||
c1 = ( 1 - lambda ) * x_inf + lambda * x_sup
|
c1 = ( 1 - λ ) * x_inf + λ * x_sup
|
||||||
c2 = lambda * x_inf + ( 1 - lambda ) * x_sup
|
c2 = λ * x_inf + ( 1 - λ ) * x_sup
|
||||||
x'_inf =
|
x'_inf =
|
||||||
case doBox1 ( setter ( 𝕀 x_inf c1 ) box ) of
|
case doBox1 ( setter ( 𝕀 x_inf c1 ) box ) of
|
||||||
[] -> c1
|
[] -> c1
|
||||||
|
@ -706,9 +703,12 @@ makeBox2Consistent minWidth (Box2Options epsEq lambdaMin coordsToNarrow eqsToUse
|
||||||
[] -> c2
|
[] -> c2
|
||||||
x's -> maximum $ map ( sup . getter ) x's
|
x's -> maximum $ map ( sup . getter ) x's
|
||||||
x' = 𝕀 x'_inf x'_sup
|
x' = 𝕀 x'_inf x'_sup
|
||||||
when ( width x - width x' >= epsEq ) $
|
when ( width x - width x' >= ε_eq ) $
|
||||||
State.put True
|
State.put True
|
||||||
return $ setter x' box
|
return $ setter x' box
|
||||||
|
where
|
||||||
|
getter = ( `index` i )
|
||||||
|
setter = set i
|
||||||
|
|
||||||
-- | Pre-condition the system \( AX = B \).
|
-- | Pre-condition the system \( AX = B \).
|
||||||
precondition
|
precondition
|
||||||
|
@ -779,7 +779,7 @@ leftNarrow :: Double
|
||||||
-> ( 𝕀 Double -> ( 𝕀 Double, 𝕀 Double ) )
|
-> ( 𝕀 Double -> ( 𝕀 Double, 𝕀 Double ) )
|
||||||
-> 𝕀 Double
|
-> 𝕀 Double
|
||||||
-> [ 𝕀 Double ]
|
-> [ 𝕀 Double ]
|
||||||
leftNarrow eps_equal eps_bisection ff' = left_narrow
|
leftNarrow ε_eq ε_bis ff' = left_narrow
|
||||||
where
|
where
|
||||||
left_narrow ( 𝕀 x_inf x_sup ) =
|
left_narrow ( 𝕀 x_inf x_sup ) =
|
||||||
go x_sup ( 𝕀 x_inf ( if x_inf == x_sup then x_inf else succFP x_inf ) )
|
go x_sup ( 𝕀 x_inf ( if x_inf == x_sup then x_inf else succFP x_inf ) )
|
||||||
|
@ -791,19 +791,18 @@ leftNarrow eps_equal eps_bisection ff' = left_narrow
|
||||||
else
|
else
|
||||||
let x = 𝕀 ( sup x_left ) x_sup
|
let x = 𝕀 ( sup x_left ) x_sup
|
||||||
( _f_x, f'_x ) = ff' x
|
( _f_x, f'_x ) = ff' x
|
||||||
x's = do delta <- f_x_left `extendedDivide` f'_x --f'_x_left
|
x's = do δ <- f_x_left `extendedDivide` f'_x
|
||||||
let x_new = x_left - delta
|
let x_new = x_left - δ
|
||||||
map fst $ x_new `intersect` x
|
map fst $ x_new `intersect` x
|
||||||
in
|
in
|
||||||
if | null x's
|
if | null x's
|
||||||
-> []
|
-> []
|
||||||
| ( width x - sum ( map width x's ) ) < eps_equal
|
| ( width x - sum ( map width x's ) ) < ε_eq
|
||||||
-- TODO: do a check with the relative reduction in size?
|
|
||||||
-> x's
|
-> x's
|
||||||
| otherwise
|
| otherwise
|
||||||
-> do
|
-> do
|
||||||
x' <- x's
|
x' <- x's
|
||||||
if sup x' - inf x' < eps_bisection
|
if sup x' - inf x' < ε_bis
|
||||||
then return x'
|
then return x'
|
||||||
else left_narrow =<< bisectI x'
|
else left_narrow =<< bisectI x'
|
||||||
|
|
||||||
|
@ -813,7 +812,7 @@ rightNarrow :: Double
|
||||||
-> ( 𝕀 Double -> ( 𝕀 Double, 𝕀 Double ) )
|
-> ( 𝕀 Double -> ( 𝕀 Double, 𝕀 Double ) )
|
||||||
-> 𝕀 Double
|
-> 𝕀 Double
|
||||||
-> [ 𝕀 Double ]
|
-> [ 𝕀 Double ]
|
||||||
rightNarrow eps_equal eps_bisection ff' = right_narrow
|
rightNarrow ε_eq ε_bis ff' = right_narrow
|
||||||
where
|
where
|
||||||
right_narrow ( 𝕀 x_inf x_sup ) =
|
right_narrow ( 𝕀 x_inf x_sup ) =
|
||||||
go x_inf ( 𝕀 ( if x_inf == x_sup then x_sup else prevFP x_sup ) x_sup )
|
go x_inf ( 𝕀 ( if x_inf == x_sup then x_sup else prevFP x_sup ) x_sup )
|
||||||
|
@ -825,19 +824,18 @@ rightNarrow eps_equal eps_bisection ff' = right_narrow
|
||||||
else
|
else
|
||||||
let x = 𝕀 x_inf ( inf x_right )
|
let x = 𝕀 x_inf ( inf x_right )
|
||||||
( _f_x, f'_x ) = ff' x
|
( _f_x, f'_x ) = ff' x
|
||||||
x's = do delta <- f_x_right `extendedDivide` f'_x --f'_x_right
|
x's = do δ <- f_x_right `extendedDivide` f'_x
|
||||||
let x_new = x_right - delta
|
let x_new = x_right - δ
|
||||||
map fst $ x_new `intersect` x
|
map fst $ x_new `intersect` x
|
||||||
in
|
in
|
||||||
if | null x's
|
if | null x's
|
||||||
-> []
|
-> []
|
||||||
| ( width x - sum ( map width x's ) ) < eps_equal
|
| ( width x - sum ( map width x's ) ) < ε_eq
|
||||||
-- TODO: do a check with the relative reduction in size?
|
|
||||||
-> x's
|
-> x's
|
||||||
| otherwise
|
| otherwise
|
||||||
-> do
|
-> do
|
||||||
x' <- x's
|
x' <- x's
|
||||||
if sup x' - inf x' < eps_bisection
|
if sup x' - inf x' < ε_bis
|
||||||
then return x'
|
then return x'
|
||||||
else right_narrow =<< bisectI x'
|
else right_narrow =<< bisectI x'
|
||||||
|
|
||||||
|
@ -873,25 +871,21 @@ allNarrowingOperators
|
||||||
-> Box1Options n d
|
-> Box1Options n d
|
||||||
-> ( 𝕀ℝ n -> D 1 ( 𝕀ℝ n ) ( 𝕀ℝ d ) )
|
-> ( 𝕀ℝ n -> D 1 ( 𝕀ℝ n ) ( 𝕀ℝ d ) )
|
||||||
-> [ Box n -> State Bool [ Box n ] ]
|
-> [ Box n -> State Bool [ Box n ] ]
|
||||||
allNarrowingOperators eps_bis ( Box1Options eps_eq coordsToNarrow eqsToUse ) eqs =
|
allNarrowingOperators ε_bis ( Box1Options ε_eq coordsToNarrow eqsToUse ) eqs =
|
||||||
[ \ cand ->
|
[ \ cand ->
|
||||||
let getter = ( `index` coordIndex )
|
let getter = ( `index` coordIndex )
|
||||||
setter = set coordIndex
|
setter = set coordIndex
|
||||||
newCands = map ( `setter` cand ) $ narrowFn eps_eq eps_bis ( \ x0 -> fn $ setter x0 cand ) ( getter cand )
|
newCands = map ( `setter` cand ) $ narrowFn ( \ box -> ff' coordIndex eqnIndex $ setter box cand ) ( getter cand )
|
||||||
in do
|
in do
|
||||||
when ( ( width ( getter cand ) - sum ( map ( width . getter ) newCands ) ) > eps_eq ) $
|
when ( ( width ( getter cand ) - sum ( map ( width . getter ) newCands ) ) > ε_eq ) $
|
||||||
-- TODO: do a check with the relative reduction in size?
|
-- TODO: do a check with the relative reduction in size?
|
||||||
State.put True
|
State.put True
|
||||||
return newCands
|
return newCands
|
||||||
| narrowFn <- [ leftNarrow, rightNarrow ]
|
| narrowFn <- [ leftNarrow ε_eq ε_bis, rightNarrow ε_eq ε_bis ]
|
||||||
, ( coordIndex, fn ) <-
|
, coordIndex <- coordsToNarrow
|
||||||
[ ( i, ff' i d )
|
, eqnIndex <- eqsToUse
|
||||||
| i <- coordsToNarrow
|
|
||||||
, d <- eqsToUse
|
|
||||||
]
|
|
||||||
]
|
]
|
||||||
where
|
where
|
||||||
|
|
||||||
ff' :: Fin n -> Fin d -> 𝕀ℝ n -> ( 𝕀 Double, 𝕀 Double )
|
ff' :: Fin n -> Fin d -> 𝕀ℝ n -> ( 𝕀 Double, 𝕀 Double )
|
||||||
ff' i d ts =
|
ff' i d ts =
|
||||||
let df = eqs ts
|
let df = eqs ts
|
||||||
|
@ -900,3 +894,86 @@ allNarrowingOperators eps_bis ( Box1Options eps_eq coordsToNarrow eqsToUse ) eqs
|
||||||
f' = df `monIndex` linearMonomial i
|
f' = df `monIndex` linearMonomial i
|
||||||
in ( f `index` d, f' `index` d )
|
in ( f `index` d, f' `index` d )
|
||||||
{-# INLINEABLE allNarrowingOperators #-}
|
{-# INLINEABLE allNarrowingOperators #-}
|
||||||
|
|
||||||
|
|
||||||
|
data AdaptiveShavingOptions
|
||||||
|
= AdaptiveShavingOptions
|
||||||
|
{ γ_init, σ_good, σ_bad, β_good, β_bad :: !Double
|
||||||
|
}
|
||||||
|
|
||||||
|
defaultAdaptiveShavingOptions :: AdaptiveShavingOptions
|
||||||
|
defaultAdaptiveShavingOptions =
|
||||||
|
AdaptiveShavingOptions
|
||||||
|
{ γ_init = 0.25
|
||||||
|
, σ_good = 0.25
|
||||||
|
, σ_bad = 0.75
|
||||||
|
, β_good = 1.5
|
||||||
|
, β_bad = 0.7
|
||||||
|
}
|
||||||
|
|
||||||
|
-- | Algorithm @lnar_sbc3ag@ (adaptive guessing) from the paper
|
||||||
|
-- "Box Consistency through Adaptive Shaving" (Goldsztejn & Goualard, 2010).
|
||||||
|
leftShave :: Double
|
||||||
|
-> AdaptiveShavingOptions
|
||||||
|
-> ( 𝕀 Double -> ( 𝕀 Double, 𝕀 Double ) )
|
||||||
|
-> 𝕀 Double
|
||||||
|
-> [ 𝕀 Double ]
|
||||||
|
leftShave ε -- minimum width
|
||||||
|
( AdaptiveShavingOptions { γ_init, σ_good, σ_bad, β_good, β_bad } )
|
||||||
|
ff' i0 =
|
||||||
|
left_narrow γ_init i0
|
||||||
|
where
|
||||||
|
w0 = width i0
|
||||||
|
left_narrow :: Double -> 𝕀 Double -> [ 𝕀 Double ]
|
||||||
|
left_narrow γ i@( 𝕀 x_inf x_sup )
|
||||||
|
-- Stop if the box is too small.
|
||||||
|
| width i < ε
|
||||||
|
= [ i ]
|
||||||
|
| otherwise
|
||||||
|
= go γ x_sup ( 𝕀 x_inf ( if x_inf == x_sup then x_inf else succFP x_inf ) )
|
||||||
|
go :: Double -> Double -> 𝕀 Double -> [ 𝕀 Double ]
|
||||||
|
go γ x_sup x_left =
|
||||||
|
let ( f_x_left, _f'_x_left ) = ff' x_left
|
||||||
|
in
|
||||||
|
if 0 `inside` f_x_left
|
||||||
|
-- Box-consistency achieved; finish.
|
||||||
|
then [ 𝕀 ( inf x_left ) x_sup ]
|
||||||
|
else
|
||||||
|
-- Otherwise, try to shave off a chunk on the left of the interval.
|
||||||
|
let --x' = 𝕀 ( sup x_left ) x_sup
|
||||||
|
inf_guess = sup x_left
|
||||||
|
sup_guess = min x_sup ( inf_guess + γ * w0 ) -- * width x' )
|
||||||
|
guess = 𝕀 inf_guess sup_guess
|
||||||
|
-- NB: this always uses the initial width (to "avoid asymptotic behaviour" according to the paper)
|
||||||
|
( f_guess, f'_guess ) = ff' guess
|
||||||
|
x_minus_guess = 𝕀 ( min x_sup ( succFP $ sup guess ) ) x_sup
|
||||||
|
in if not ( 0 `inside` f_guess )
|
||||||
|
then
|
||||||
|
-- We successfully shaved "guess" off; go round again after removing it.
|
||||||
|
-- TODO: here we could go back to the top with a new "w" maybe?
|
||||||
|
left_narrow ( β_good * γ ) x_minus_guess
|
||||||
|
else
|
||||||
|
-- Do a Newton step to try to reduce the guess interval.
|
||||||
|
-- Starting from "guess", we get a collection of sub-intervals
|
||||||
|
-- "guesses'" refining where the function can be zero.
|
||||||
|
let guesses' :: [ ( 𝕀 Double ) ]
|
||||||
|
guesses' = do
|
||||||
|
δ <- f_x_left `extendedDivide` f'_guess
|
||||||
|
let guess' = singleton ( inf guess ) - δ
|
||||||
|
map fst $ guess' `intersect` guess
|
||||||
|
w_guess = width guess
|
||||||
|
w_guesses'
|
||||||
|
| null guesses'
|
||||||
|
= 0
|
||||||
|
| otherwise
|
||||||
|
= sup_guess - minimum ( map inf guesses' )
|
||||||
|
γ' | w_guesses' < σ_good * w_guess
|
||||||
|
-- Good improvement, try larger guesses in the future.
|
||||||
|
= β_good * γ
|
||||||
|
| w_guesses' > σ_bad * w_guess
|
||||||
|
-- Poor improvement, try smaller guesses in the future.
|
||||||
|
= β_bad * γ
|
||||||
|
| otherwise
|
||||||
|
-- Otherwise, keep the γ factor the same.
|
||||||
|
= γ
|
||||||
|
in left_narrow γ' =<< ( x_minus_guess : guesses' )
|
||||||
|
|
Loading…
Reference in a new issue