mirror of
https://gitlab.com/sheaf/metabrush.git
synced 2024-11-27 09:24:08 +00:00
fitting a cubic Bézier to a sequence of points
* WIP: current code exhibits convergence issues / instability
This commit is contained in:
parent
86a1426136
commit
f16ac3fa93
|
@ -36,6 +36,8 @@ common common
|
|||
>= 0.8.0.0 && < 0.8.4.0
|
||||
, groups
|
||||
^>= 0.4.1.0
|
||||
, transformers
|
||||
^>= 0.5.6.2
|
||||
|
||||
default-language:
|
||||
Haskell2010
|
||||
|
@ -62,17 +64,20 @@ library
|
|||
|
||||
exposed-modules:
|
||||
Math.Bezier.Cubic
|
||||
, Math.Bezier.Cubic.Fit
|
||||
, Math.Bezier.Quadratic
|
||||
, Math.Bezier.Stroke
|
||||
, Math.Bezier.Subdivision
|
||||
, Math.Epsilon
|
||||
, Math.Linear.SVD
|
||||
, Math.Module
|
||||
, Math.RealRoots
|
||||
, Math.Roots
|
||||
, Math.Vector2D
|
||||
|
||||
build-depends:
|
||||
groups-generic
|
||||
^>= 0.1.0.0
|
||||
, vector
|
||||
^>= 0.12.1.2
|
||||
|
||||
executable MetaBrush
|
||||
|
||||
|
@ -148,5 +153,3 @@ executable MetaBrush
|
|||
^>= 0.4.1.0
|
||||
, text
|
||||
^>= 1.2.3.1 && < 1.2.5
|
||||
, transformers
|
||||
^>= 0.5.6.2
|
||||
|
|
|
@ -30,31 +30,14 @@ import Data.Text
|
|||
|
||||
data ColourRecord a
|
||||
= Colours
|
||||
{ bg :: !a
|
||||
, active :: !a
|
||||
, highlight :: !a
|
||||
, cursor :: !a
|
||||
, cursorOutline :: !a
|
||||
, plain :: !a
|
||||
, base :: !a
|
||||
, splash :: !a
|
||||
, pathPoint :: !a
|
||||
, pathPointOutline :: !a
|
||||
, controlPoint :: !a
|
||||
, controlPointOutline :: !a
|
||||
, path :: !a
|
||||
, brush :: !a
|
||||
, brushStroke :: !a
|
||||
, brushCenter :: !a
|
||||
, pointHover :: !a
|
||||
, pointSelected :: !a
|
||||
, viewport :: !a
|
||||
, viewportScrollbar :: !a
|
||||
, tabScrollbar :: !a
|
||||
, magnifier :: !a
|
||||
, glass :: !a
|
||||
, selected :: !a
|
||||
, selectedOutline :: !a
|
||||
{ bg, active, highlight, cursor, cursorOutline
|
||||
, plain, base, splash
|
||||
, pathPoint, pathPointOutline, controlPoint, controlPointOutline
|
||||
, path, brush, brushStroke, brushCenter
|
||||
, pointHover, pointSelected
|
||||
, viewport, viewportScrollbar, tabScrollbar
|
||||
, magnifier, glass
|
||||
, selected, selectedOutline :: !a
|
||||
}
|
||||
deriving stock ( Show, Functor, Foldable, Traversable )
|
||||
|
||||
|
|
|
@ -58,9 +58,7 @@ import MetaBrush.Unique
|
|||
|
||||
data AABB
|
||||
= AABB
|
||||
{ topLeft :: !( Point2D Double )
|
||||
, botRight :: !( Point2D Double )
|
||||
}
|
||||
{ topLeft, botRight :: !( Point2D Double ) }
|
||||
deriving stock Show
|
||||
|
||||
data Document
|
||||
|
|
|
@ -257,13 +257,13 @@ handleScrollEvent
|
|||
| dx == 0 && any ( \ key -> key == Shift_L || key == Shift_R ) pressedKeys
|
||||
= let
|
||||
newCenter :: Point2D Double
|
||||
newCenter = ( ( 25 / oldZoomFactor ) *^ Vector2D ( Point2D dy 0 ) ) • oldCenter
|
||||
newCenter = ( ( 25 / oldZoomFactor ) *^ Vector2D dy 0 ) • oldCenter
|
||||
in doc { viewportCenter = newCenter }
|
||||
-- Vertical scrolling.
|
||||
| otherwise
|
||||
= let
|
||||
newCenter :: Point2D Double
|
||||
newCenter = ( ( 25 / oldZoomFactor ) *^ Vector2D ( Point2D dx dy ) ) • oldCenter
|
||||
newCenter = ( ( 25 / oldZoomFactor ) *^ Vector2D dx dy ) • oldCenter
|
||||
in doc { viewportCenter = newCenter }
|
||||
docs' :: IntMap Document
|
||||
docs' = IntMap.insert i newDoc docs
|
||||
|
|
|
@ -89,12 +89,8 @@ import MetaBrush.UI.ToolBar
|
|||
|
||||
data Renders a
|
||||
= Renders
|
||||
{ renderPath :: a
|
||||
, renderStrokes :: a
|
||||
, renderBrushes :: a
|
||||
, renderCPts :: a
|
||||
, renderCLines :: a
|
||||
, renderPPts :: a
|
||||
{ renderPath, renderStrokes, renderBrushes
|
||||
, renderCPts, renderCLines, renderPPts :: a
|
||||
}
|
||||
deriving stock ( Show, Functor, Foldable, Traversable, Generic, Generic1 )
|
||||
deriving Applicative
|
||||
|
|
|
@ -51,18 +51,14 @@ import MetaBrush.Render.Util
|
|||
|
||||
data InfoBar
|
||||
= InfoBar
|
||||
{ zoomText :: !GTK.Label -- make this editable
|
||||
, cursorPosText :: !GTK.Label
|
||||
, topLeftPosText :: !GTK.Label
|
||||
, botRightPosText :: !GTK.Label
|
||||
{ zoomText :: !GTK.Label -- make this editable
|
||||
, cursorPosText, topLeftPosText, botRightPosText :: !GTK.Label
|
||||
}
|
||||
|
||||
data InfoData
|
||||
= InfoData
|
||||
{ zoom :: !Double
|
||||
, mousePos :: !( Point2D Double )
|
||||
, topLeftPos :: !( Point2D Double )
|
||||
, botRightPos :: !( Point2D Double )
|
||||
{ zoom :: !Double
|
||||
, mousePos, topLeftPos, botRightPos :: !( Point2D Double )
|
||||
}
|
||||
deriving stock Show
|
||||
|
||||
|
|
|
@ -110,40 +110,26 @@ data Menu ( rt :: ResourceType )
|
|||
|
||||
data FileMenu ( rt :: ResourceType )
|
||||
= FileMenu
|
||||
{ new :: !( MenuItem NoSubresource rt )
|
||||
, open :: !( MenuItem NoSubresource rt )
|
||||
, save :: !( MenuItem NoSubresource rt )
|
||||
, saveAs :: !( MenuItem NoSubresource rt )
|
||||
, close :: !( MenuItem NoSubresource rt )
|
||||
, quit :: !( MenuItem NoSubresource rt )
|
||||
}
|
||||
{ new, open, save, saveAs, close, quit :: !( MenuItem NoSubresource rt ) }
|
||||
deriving stock Generic
|
||||
|
||||
data EditMenu ( rt :: ResourceType )
|
||||
= EditMenu
|
||||
{ undo :: !( MenuItem NoSubresource rt )
|
||||
, redo :: !( MenuItem NoSubresource rt )
|
||||
, history :: !( MenuItem NoSubresource rt )
|
||||
, editSep1 :: !( Separator rt )
|
||||
, cut :: !( MenuItem NoSubresource rt )
|
||||
, copy :: !( MenuItem NoSubresource rt )
|
||||
, paste :: !( MenuItem NoSubresource rt )
|
||||
, duplicate :: !( MenuItem NoSubresource rt )
|
||||
, delete :: !( MenuItem NoSubresource rt )
|
||||
, editSep2 :: !( Separator rt )
|
||||
{ undo, redo, history :: !( MenuItem NoSubresource rt )
|
||||
, editSep1 :: !( Separator rt )
|
||||
, cut, copy, paste, duplicate, delete :: !( MenuItem NoSubresource rt )
|
||||
, editSep2 :: !( Separator rt )
|
||||
, preferences :: !( MenuItem NoSubresource rt )
|
||||
}
|
||||
deriving stock Generic
|
||||
|
||||
data ViewMenu ( rt :: ResourceType )
|
||||
= ViewMenu
|
||||
{ navigator :: !( MenuItem NoSubresource rt )
|
||||
, viewSep1 :: !( Separator rt )
|
||||
, strokes :: !( MenuItem NoSubresource rt )
|
||||
, brushes :: !( MenuItem NoSubresource rt )
|
||||
, metaparameters :: !( MenuItem NoSubresource rt )
|
||||
, viewSep2 :: !( Separator rt )
|
||||
, transform :: !( MenuItem NoSubresource rt )
|
||||
{ navigator :: !( MenuItem NoSubresource rt )
|
||||
, viewSep1 :: !( Separator rt )
|
||||
, strokes, brushes, metaparameters :: !( MenuItem NoSubresource rt )
|
||||
, viewSep2 :: !( Separator rt )
|
||||
, transform :: !( MenuItem NoSubresource rt )
|
||||
}
|
||||
deriving stock Generic
|
||||
|
||||
|
|
|
@ -54,12 +54,7 @@ data Mode
|
|||
|
||||
data ToolBar
|
||||
= ToolBar
|
||||
{ selectionTool :: !GTK.RadioButton
|
||||
, penTool :: !GTK.RadioButton
|
||||
, pathTool :: !GTK.RadioButton
|
||||
, brushTool :: !GTK.RadioButton
|
||||
, metaTool :: !GTK.RadioButton
|
||||
}
|
||||
{ selectionTool, penTool, pathTool, brushTool, metaTool :: !GTK.RadioButton }
|
||||
|
||||
createToolBar :: STM.TVar Tool -> STM.TVar Mode -> Colours -> GTK.DrawingArea -> GTK.Box -> IO ToolBar
|
||||
createToolBar toolTVar modeTVar colours drawingArea toolBar = do
|
||||
|
|
|
@ -13,7 +13,7 @@ module Math.Bezier.Cubic
|
|||
( Bezier(..)
|
||||
, bezier, bezier'
|
||||
, subdivide
|
||||
, closestPoint
|
||||
, ddist, closestPoint
|
||||
)
|
||||
where
|
||||
|
||||
|
@ -39,21 +39,17 @@ import Math.Module
|
|||
, lerp
|
||||
, Inner(..), squaredNorm
|
||||
)
|
||||
import Math.RealRoots
|
||||
import Math.Roots
|
||||
( realRoots )
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
-- | Points defining a cubic Bézier curve.
|
||||
-- | Points defining a cubic Bézier curve (Bernstein form).
|
||||
--
|
||||
-- @ p0 @ and @ p3 @ are endpoints, whereas @ p1 @ and @ p2 @ are control points.
|
||||
data Bezier p
|
||||
= Bezier
|
||||
{ p0 :: !p
|
||||
, p1 :: !p
|
||||
, p2 :: !p
|
||||
, p3 :: !p
|
||||
}
|
||||
{ p0, p1, p2, p3 :: !p }
|
||||
deriving stock ( Show, Generic, Functor, Foldable, Traversable )
|
||||
|
||||
-- | Cubic Bézier curve.
|
||||
|
@ -83,13 +79,10 @@ subdivide ( Bezier { .. } ) t = ( Bezier p0 q1 q2 pt, Bezier pt r1 r2 p3 )
|
|||
r1 = lerp @v t s r2
|
||||
pt = lerp @v t q2 r1
|
||||
|
||||
-- | Finds the closest point to a given point on a cubic Bézier curve.
|
||||
closestPoint :: forall v r p. ( Torsor v p, Inner r v, RealFloat r ) => Bezier p -> p -> ArgMin r ( r, p )
|
||||
closestPoint pts@( Bezier { .. } ) c = pickClosest ( 0 :| 1 : roots )
|
||||
-- | Polynomial coefficients of the derivative of the distance to a cubic Bézier curve.
|
||||
ddist :: forall v r p. ( Torsor v p, Inner r v, RealFloat r ) => Bezier p -> p -> [ r ]
|
||||
ddist ( Bezier { .. } ) c = [ a0, a1, a2, a3, a4, a5 ]
|
||||
where
|
||||
roots :: [ r ]
|
||||
roots = filter ( \ r -> r > 0 && r < 1 ) ( realRoots [ a0, a1, a2, a3, a4, a5 ] )
|
||||
|
||||
v, v', v'', v''' :: v
|
||||
v = c --> p0
|
||||
v' = p0 --> p1
|
||||
|
@ -99,11 +92,18 @@ closestPoint pts@( Bezier { .. } ) c = pickClosest ( 0 :| 1 : roots )
|
|||
a0, a1, a2, a3, a4, a5 :: r
|
||||
a0 = v ^.^ v'
|
||||
a1 = 3 * squaredNorm v' + 2 * v ^.^ v''
|
||||
a2 = 9 * v' ^.^ v'' + 3 * v ^.^ v'''
|
||||
a2 = 9 * v' ^.^ v'' + v ^.^ v'''
|
||||
a3 = 6 * squaredNorm v'' + 4 * v' ^.^ v'''
|
||||
a4 = 5 * v'' ^.^ v'''
|
||||
a5 = squaredNorm v'''
|
||||
|
||||
-- | Finds the closest point to a given point on a cubic Bézier curve.
|
||||
closestPoint :: forall v r p. ( Torsor v p, Inner r v, RealFloat r ) => Bezier p -> p -> ArgMin r ( r, p )
|
||||
closestPoint pts@( Bezier { .. } ) c = pickClosest ( 0 :| 1 : roots )
|
||||
where
|
||||
roots :: [ r ]
|
||||
roots = filter ( \ r -> r > 0 && r < 1 ) ( realRoots $ ddist @v pts c )
|
||||
|
||||
pickClosest :: NonEmpty r -> ArgMin r ( r, p )
|
||||
pickClosest ( s :| ss ) = go s q nm0 ss
|
||||
where
|
||||
|
|
181
src/lib/Math/Bezier/Cubic/Fit.hs
Normal file
181
src/lib/Math/Bezier/Cubic/Fit.hs
Normal file
|
@ -0,0 +1,181 @@
|
|||
{-# LANGUAGE BlockArguments #-}
|
||||
{-# LANGUAGE NamedFieldPuns #-}
|
||||
{-# LANGUAGE ScopedTypeVariables #-}
|
||||
{-# LANGUAGE TypeApplications #-}
|
||||
|
||||
module Math.Bezier.Cubic.Fit where
|
||||
|
||||
-- base
|
||||
import Control.Arrow
|
||||
( first, second )
|
||||
import Control.Monad
|
||||
( when )
|
||||
import Control.Monad.ST
|
||||
( ST, runST )
|
||||
import Data.Complex
|
||||
( Complex(..) )
|
||||
import Data.Foldable
|
||||
( for_ )
|
||||
|
||||
-- acts
|
||||
import Data.Act
|
||||
( Act
|
||||
( (•) )
|
||||
)
|
||||
|
||||
-- transformers
|
||||
import Control.Monad.Trans.State.Strict
|
||||
( execStateT, modify' )
|
||||
import Control.Monad.Trans.Class
|
||||
( lift )
|
||||
|
||||
-- vector
|
||||
import qualified Data.Vector.Unboxed.Mutable as Unboxed
|
||||
( MVector )
|
||||
import qualified Data.Vector.Unboxed.Mutable as Unboxed.MVector
|
||||
( unsafeRead, unsafeWrite )
|
||||
import qualified Data.Vector.Unboxed as Unboxed.Vector
|
||||
( unsafeThaw, generate )
|
||||
|
||||
-- MetaBrush
|
||||
import Math.Bezier.Cubic
|
||||
( Bezier(..), bezier, ddist )
|
||||
import Math.Epsilon
|
||||
( epsilon )
|
||||
import Math.Linear.SVD
|
||||
( lsolve )
|
||||
import Math.Module
|
||||
( Module((*^), (^-^))
|
||||
, Inner((^.^)), quadrance
|
||||
)
|
||||
import Math.Roots
|
||||
( laguerre ) --, eval, derivative )
|
||||
import Math.Vector2D
|
||||
( Mat22(..), Point2D(..), Vector2D(..) )
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
-- | Fits a single cubic Bézier curve to the given data.
|
||||
--
|
||||
-- This will consist of a cubic Bézier curve which:
|
||||
--
|
||||
-- * starts at \( p \) with tangent \( \textrm{t}_p \),
|
||||
-- * ends at \( r \) with tangent \( \textrm{t}_r \),
|
||||
-- * best fits the intermediate sequence of points \( \left ( q_i \right )_{i=1}^n \).
|
||||
--
|
||||
-- /Note/: the order of the intermediate points is important.
|
||||
--
|
||||
-- Proceeds by fitting a cubic Bézier curve \( B(t) \), \( 0 \leqslant t \leqslant 1 \),
|
||||
-- with given endpoints and tangents, which minimises the sum of squares functional
|
||||
--
|
||||
-- \[ \sum_{i=1}^n \left \| C(t_i) - q_i \right \|^2. \]
|
||||
--
|
||||
-- The values of the parameters \( \left ( t_i \right )_{i=1}^n \) are recursively estimated,
|
||||
-- starting from uniform parametrisation.
|
||||
--
|
||||
-- The iteration ends when any of the following conditions are satisfied:
|
||||
--
|
||||
-- * each new estimated parameter values \( t_i' \) differs from
|
||||
-- its previous value \( t_i \) by less than \( \texttt{t_tol} \),
|
||||
-- * each point \( C(t_i) \) is within squared distance \( \texttt{sq_dist_tol} \)
|
||||
-- of the point \( q_i \) it is associated with,
|
||||
-- * the maximum iteration limit \( \texttt{maxCount} \) has been reached.
|
||||
fitPiece
|
||||
:: Double -- ^ \( \texttt{t_tol} \), the tolerance for the Bézier parameter
|
||||
-> Double -- ^ \( \texttt{sq_dist_tol} \), tolerance for the squared distance
|
||||
-> Int -- ^ \( \texttt{maxCount} \), maximum number of iterations
|
||||
-> Point2D Double -- ^ \( p \), start point
|
||||
-> Vector2D Double -- ^ \( \textrm{t}_p \), start tangent vector (length is ignored)
|
||||
-> [ Point2D Double ] -- ^ \( \left ( q_i \right )_{i=1}^n \), points to fit
|
||||
-> Point2D Double -- ^ \( r \), end point
|
||||
-> Vector2D Double -- ^ \( \textrm{t}_r \), end tangent vector (length is ignored)
|
||||
-> Bezier ( Point2D Double )
|
||||
fitPiece t_tol sq_dist_tol maxCount p tp qs r tr = piece
|
||||
where
|
||||
n :: Int
|
||||
n = length qs
|
||||
uniform :: Int -> Double
|
||||
uniform i = fromIntegral ( i + 1 ) / fromIntegral ( n + 1 )
|
||||
|
||||
f0, f1, f2, f3 :: Double -> Vector2D Double
|
||||
f0 t = h1 t *^ tp
|
||||
f1 t = h2 t *^ tr
|
||||
f2 t = h0 t *^ ( MkVector2D p )
|
||||
f3 t = h3 t *^ ( MkVector2D r )
|
||||
|
||||
piece :: Bezier ( Point2D Double )
|
||||
piece = runST do
|
||||
ts <- Unboxed.Vector.unsafeThaw ( Unboxed.Vector.generate n uniform )
|
||||
loop ts 0
|
||||
|
||||
loop :: forall s. Unboxed.MVector s Double -> Int -> ST s ( Bezier ( Point2D Double ) )
|
||||
loop ts count = do
|
||||
let
|
||||
hermiteParameters :: Mat22 Double -> Vector2D Double -> Int -> [ Point2D Double ] -> ST s ( Vector2D Double )
|
||||
hermiteParameters ( Mat22 a11 a12 _ a22 ) ( Vector2D b1 b2 ) i ( q : rest ) = do
|
||||
ti <- Unboxed.MVector.unsafeRead ts i
|
||||
let
|
||||
f0i, f1i, f2i, f3i :: Vector2D Double
|
||||
f0i = f0 ti
|
||||
f1i = f1 ti
|
||||
f2i = f2 ti
|
||||
f3i = f3 ti
|
||||
q' = MkVector2D q ^-^ f2i ^-^ f3i
|
||||
a11', a12', a21', a22', b1', b2' :: Double
|
||||
a11' = a11 + ( f0i ^.^ f0i )
|
||||
a12' = a12 + ( f1i ^.^ f0i )
|
||||
a21' = a12'
|
||||
a22' = a22 + ( f1i ^.^ f1i )
|
||||
b1' = b1 + ( q' ^.^ f0i )
|
||||
b2' = b2 + ( q' ^.^ f1i )
|
||||
hermiteParameters ( Mat22 a11' a12' a21' a22' ) ( Vector2D b1' b2' ) ( i + 1 ) rest
|
||||
hermiteParameters a b _ [] = pure ( lsolve a b )
|
||||
|
||||
Vector2D s1 s2 <- hermiteParameters ( Mat22 0 0 0 0 ) ( Vector2D 0 0 ) 0 qs
|
||||
|
||||
let
|
||||
cp1, cp2 :: Point2D Double
|
||||
cp1 = ( ( s1 / 3 ) *^ tp ) • p
|
||||
cp2 = ( ( (-s2) / 3 ) *^ tr ) • r
|
||||
|
||||
bez :: Bezier ( Point2D Double )
|
||||
bez = Bezier p cp1 cp2 r
|
||||
|
||||
if count >= maxCount
|
||||
then pure bez
|
||||
else do
|
||||
|
||||
-- Run one iteration of Laguerre's method to improve the parameter values t_i,
|
||||
-- so that t_i' is a better approximation of the parameter
|
||||
-- at which the curve is closest to q_i.
|
||||
( ts_ok, pts_ok ) <- ( `execStateT` ( True, True ) ) $ for_ ( zip qs [ 0 .. ] ) \( q, i ) -> do
|
||||
ti <- lift ( Unboxed.MVector.unsafeRead ts i )
|
||||
let
|
||||
poly :: [ Complex Double ]
|
||||
poly = map (:+ 0) $ ddist @( Vector2D Double ) bez q
|
||||
ti' :: Double
|
||||
ti' = case laguerre epsilon 1 poly ( ti :+ 0 ) of
|
||||
x :+ y
|
||||
| abs y > epsilon
|
||||
|| isNaN x
|
||||
|| isNaN y
|
||||
-> ti
|
||||
| otherwise
|
||||
-> x
|
||||
|
||||
when ( abs ( ti' - ti ) > t_tol )
|
||||
( modify' ( first ( const False ) ) )
|
||||
when ( quadrance @( Vector2D Double ) q ( bezier @( Vector2D Double ) bez ti' ) > sq_dist_tol )
|
||||
( modify' ( second ( const False ) ) )
|
||||
lift ( Unboxed.MVector.unsafeWrite ts i ti' )
|
||||
|
||||
if ts_ok || pts_ok
|
||||
then pure bez
|
||||
else loop ts ( count + 1 )
|
||||
|
||||
-- | Cubic Hermite polynomial.
|
||||
h0, h1, h2, h3 :: Num t => t -> t
|
||||
h0 t = ( 1 + 2 * t ) * ( t - 1 ) ^ ( 2 :: Int )
|
||||
h1 t = t * ( t - 1 ) ^ ( 2 :: Int )
|
||||
h2 t = t ^ ( 2 :: Int ) * ( t - 1 )
|
||||
h3 t = t ^ ( 2 :: Int ) * ( 3 - 2 * t )
|
|
@ -13,7 +13,7 @@ module Math.Bezier.Quadratic
|
|||
( Bezier(..)
|
||||
, bezier, bezier'
|
||||
, subdivide
|
||||
, closestPoint
|
||||
, ddist, closestPoint
|
||||
)
|
||||
where
|
||||
|
||||
|
@ -37,20 +37,17 @@ import Math.Module
|
|||
, lerp
|
||||
, Inner(..), squaredNorm
|
||||
)
|
||||
import Math.RealRoots
|
||||
import Math.Roots
|
||||
( realRoots )
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
-- | Points defining a quadratic Bézier curve.
|
||||
-- | Points defining a quadratic Bézier curve (Bernstein form).
|
||||
--
|
||||
-- @ p0 @ and @ p2 @ are endpoints, whereas @ p1 @ is a control point.
|
||||
data Bezier p
|
||||
= Bezier
|
||||
{ p0 :: !p
|
||||
, p1 :: !p
|
||||
, p2 :: !p
|
||||
}
|
||||
{ p0, p1, p2 :: !p }
|
||||
deriving stock ( Show, Generic, Functor, Foldable, Traversable )
|
||||
|
||||
-- | Quadratic Bézier curve.
|
||||
|
@ -70,13 +67,10 @@ subdivide ( Bezier { .. } ) t = ( Bezier p0 q1 pt, Bezier pt r1 p2 )
|
|||
r1 = lerp @v t p1 p2
|
||||
pt = lerp @v t q1 r1
|
||||
|
||||
-- | Finds the closest point to a given point on a quadratic Bézier curve.
|
||||
closestPoint :: forall v r p. ( Torsor v p, Inner r v, RealFloat r ) => Bezier p -> p -> ArgMin r ( r, p )
|
||||
closestPoint pts@( Bezier { .. } ) c = pickClosest ( 0 :| 1 : roots )
|
||||
-- | Polynomial coefficients of the derivative of the distance to a quadratic Bézier curve.
|
||||
ddist :: forall v r p. ( Torsor v p, Inner r v, RealFloat r ) => Bezier p -> p -> [ r ]
|
||||
ddist ( Bezier { .. } ) c = [ a0, a1, a2, a3 ]
|
||||
where
|
||||
roots :: [ r ]
|
||||
roots = filter ( \ r -> r > 0 && r < 1 ) ( realRoots [ a0, a1, a2, a3 ] )
|
||||
|
||||
v, v', v'' :: v
|
||||
v = c --> p0
|
||||
v' = p0 --> p1
|
||||
|
@ -88,6 +82,13 @@ closestPoint pts@( Bezier { .. } ) c = pickClosest ( 0 :| 1 : roots )
|
|||
a2 = 3 * v' ^.^ v''
|
||||
a3 = squaredNorm v''
|
||||
|
||||
-- | Finds the closest point to a given point on a quadratic Bézier curve.
|
||||
closestPoint :: forall v r p. ( Torsor v p, Inner r v, RealFloat r ) => Bezier p -> p -> ArgMin r ( r, p )
|
||||
closestPoint pts@( Bezier { .. } ) c = pickClosest ( 0 :| 1 : roots )
|
||||
where
|
||||
roots :: [ r ]
|
||||
roots = filter ( \ r -> r > 0 && r < 1 ) ( realRoots $ ddist @v pts c )
|
||||
|
||||
pickClosest :: NonEmpty r -> ArgMin r ( r, p )
|
||||
pickClosest ( s :| ss ) = go s q nm0 ss
|
||||
where
|
||||
|
|
|
@ -39,7 +39,7 @@ import Math.Epsilon
|
|||
( epsilon )
|
||||
import Math.Module
|
||||
( Module((^-^)), Inner((^.^)), lerp )
|
||||
import Math.RealRoots
|
||||
import Math.Roots
|
||||
( realRoots )
|
||||
import Math.Vector2D
|
||||
( Point2D(..), Vector2D(..), cross )
|
||||
|
|
|
@ -1,3 +0,0 @@
|
|||
module Math.Bezier.Subdivision where
|
||||
|
||||
--------------------------------------------------------------------------------
|
107
src/lib/Math/Linear/SVD.hs
Normal file
107
src/lib/Math/Linear/SVD.hs
Normal file
|
@ -0,0 +1,107 @@
|
|||
{-# LANGUAGE DerivingStrategies #-}
|
||||
{-# LANGUAGE NamedFieldPuns #-}
|
||||
{-# LANGUAGE RecordWildCards #-}
|
||||
{-# LANGUAGE ScopedTypeVariables #-}
|
||||
|
||||
module Math.Linear.SVD
|
||||
( SVD(..), svd
|
||||
, pinv
|
||||
, lsolve
|
||||
)
|
||||
where
|
||||
|
||||
-- base
|
||||
import Data.Complex
|
||||
( Complex(..), magnitude )
|
||||
|
||||
-- MetaBrush
|
||||
import Math.Epsilon
|
||||
( epsilon )
|
||||
import Math.Vector2D
|
||||
( Vector2D(..), Mat22(..) )
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
data SVD a
|
||||
= SVD
|
||||
{ u :: !( Complex a )
|
||||
, sv1 :: !a
|
||||
, sv2 :: !a
|
||||
, v :: !( Complex a )
|
||||
}
|
||||
deriving stock Show
|
||||
|
||||
-- | Singular value decomposition of a real 2x2 matrix.
|
||||
svd :: forall a. ( RealFloat a, Show a ) => Mat22 a -> SVD a
|
||||
svd ( Mat22 a b c d )
|
||||
| abs f < tol
|
||||
|| any isNaN [ c1, c2, s1, s2 ]
|
||||
|| magnitude u < 1 - tol
|
||||
|| magnitude v < 1 - tol
|
||||
= SVD { u = 1, v = 1, .. }
|
||||
| otherwise
|
||||
= SVD { .. }
|
||||
where
|
||||
tol = sqrt epsilon
|
||||
|
||||
det = a * d - b * c
|
||||
q = a * a + b * b + c * c + d * d
|
||||
|
||||
n1 = q + 2 * det
|
||||
n2 = q - 2 * det
|
||||
|
||||
r1 = sqrt n1
|
||||
r2 = sqrt n2
|
||||
|
||||
sv1 = 0.5 * ( r1 + r2 )
|
||||
sv2 = 0.5 * ( r1 - r2 )
|
||||
|
||||
k = a * a - d * d
|
||||
l = b * b - c * c
|
||||
f = n1 * n2
|
||||
|
||||
|
||||
i = 0.5 / sqrt f
|
||||
|
||||
ip = ( k + l ) * i
|
||||
im = ( k - l ) * i
|
||||
|
||||
c1 = sqrt ( 0.5 + ip )
|
||||
c2 = sqrt ( 0.5 + im )
|
||||
s1 = signum ( a * c + b * d ) * sqrt ( 0.5 - ip )
|
||||
s2 = signum ( a * b + c * d ) * sqrt ( 0.5 - im )
|
||||
|
||||
u = c1 :+ s1
|
||||
v = c2 :+ s2
|
||||
|
||||
-- | Pseudo-inverse of a real 2x2 matrix.
|
||||
pinv :: forall a. ( RealFloat a, Show a ) => Mat22 a -> Mat22 a
|
||||
pinv mat = case svd mat of
|
||||
SVD { u = c1 :+ s1, sv1, sv2, v = c2 :+ s2 } ->
|
||||
Mat22
|
||||
( c1 * c2 * rsv1 + s1 * s2 * rsv2 ) ( s1 * c2 * rsv1 - c1 * s2 * rsv2 )
|
||||
( c1 * s2 * rsv1 - s1 * c2 * rsv2 ) ( s1 * s2 * rsv1 + c1 * c2 * rsv2 )
|
||||
where
|
||||
rsv1, rsv2 :: a
|
||||
rsv1
|
||||
| sv1 < epsilon
|
||||
= sv1
|
||||
| otherwise
|
||||
= recip sv1
|
||||
rsv2
|
||||
| abs sv2 < epsilon
|
||||
= sv2
|
||||
| otherwise
|
||||
= recip sv2
|
||||
|
||||
-- | Solve a 2x2 system of linear equations.
|
||||
lsolve :: forall a. ( RealFloat a, Show a ) => Mat22 a -> Vector2D a -> Vector2D a
|
||||
lsolve mat ( Vector2D x y ) = Vector2D x' y'
|
||||
where
|
||||
x', y', a11, a12, a21, a22 :: a
|
||||
Mat22
|
||||
a11 a12
|
||||
a21 a22
|
||||
= pinv mat
|
||||
x' = a11 * x + a12 * y
|
||||
y' = a21 * x + a22 * y
|
|
@ -2,10 +2,12 @@
|
|||
{-# LANGUAGE FlexibleInstances #-}
|
||||
{-# LANGUAGE FunctionalDependencies #-}
|
||||
{-# LANGUAGE ScopedTypeVariables #-}
|
||||
{-# LANGUAGE TypeApplications #-}
|
||||
|
||||
module Math.Module
|
||||
( Module(..), lerp
|
||||
, Inner(..), squaredNorm
|
||||
, Inner(..)
|
||||
, squaredNorm, quadrance, distance
|
||||
, proj, projC, closestPointToLine
|
||||
)
|
||||
where
|
||||
|
@ -48,6 +50,14 @@ class Module r m => Inner r m where
|
|||
squaredNorm :: forall m r. Inner r m => m -> r
|
||||
squaredNorm v = v ^.^ v
|
||||
|
||||
-- | Squared distance between two points.
|
||||
quadrance :: forall v r p. ( Inner r v, Torsor v p ) => p -> p -> r
|
||||
quadrance p1 p2 = squaredNorm ( p1 --> p2 :: v )
|
||||
|
||||
-- | Distance between two points.
|
||||
distance :: forall v r p. ( Floating r, Inner r v, Torsor v p ) => p -> p -> r
|
||||
distance p1 p2 = sqrt ( quadrance @v p1 p2 )
|
||||
|
||||
-- | Projects the first argument onto the second.
|
||||
proj :: forall m r. ( Inner r m, Fractional r ) => m -> m -> m
|
||||
proj x y = projC x y *^ y
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
{-# LANGUAGE ScopedTypeVariables #-}
|
||||
|
||||
module Math.RealRoots
|
||||
( realRoots )
|
||||
module Math.Roots
|
||||
|
||||
where
|
||||
|
||||
-- base
|
||||
|
@ -75,9 +75,9 @@ laguerre eps maxIters p = go maxIters
|
|||
p'' = derivative p'
|
||||
go :: Int -> Complex a -> Complex a
|
||||
go iterationsLeft x
|
||||
| iterationsLeft <= 0 = x
|
||||
| magnitude ( x' - x ) < eps = x'
|
||||
| otherwise = go ( iterationsLeft - 1 ) x'
|
||||
| iterationsLeft <= 1
|
||||
|| magnitude ( x' - x ) < eps = x'
|
||||
| otherwise = go ( iterationsLeft - 1 ) x'
|
||||
where
|
||||
x' :: Complex a
|
||||
x' = laguerreStep eps p p' p'' x
|
|
@ -3,9 +3,10 @@
|
|||
{-# LANGUAGE DerivingVia #-}
|
||||
{-# LANGUAGE FlexibleInstances #-}
|
||||
{-# LANGUAGE MultiParamTypeClasses #-}
|
||||
{-# LANGUAGE PatternSynonyms #-}
|
||||
|
||||
module Math.Vector2D
|
||||
( Point2D(..), Vector2D(..)
|
||||
( Point2D(..), Vector2D(.., Vector2D), Mat22(..)
|
||||
, cross
|
||||
)
|
||||
where
|
||||
|
@ -43,11 +44,15 @@ data Point2D a = Point2D !a !a
|
|||
deriving ( Act ( Vector2D a ), Torsor ( Vector2D a ) )
|
||||
via Vector2D a
|
||||
|
||||
newtype Vector2D a = Vector2D { tip :: Point2D a }
|
||||
newtype Vector2D a = MkVector2D { tip :: Point2D a }
|
||||
deriving stock ( Show, Eq, Functor, Foldable, Traversable )
|
||||
deriving ( Semigroup, Monoid, Group )
|
||||
via GenericProduct ( Point2D ( Sum a ) )
|
||||
|
||||
{-# COMPLETE Vector2D #-}
|
||||
pattern Vector2D :: a -> a -> Vector2D a
|
||||
pattern Vector2D x y = MkVector2D ( Point2D x y )
|
||||
|
||||
instance Num a => Module a ( Vector2D a ) where
|
||||
(^+^) = (<>)
|
||||
p ^-^ q = p <> invert q
|
||||
|
@ -56,9 +61,13 @@ instance Num a => Module a ( Vector2D a ) where
|
|||
p ^* c = fmap ( * c ) p
|
||||
|
||||
instance Num a => Inner a ( Vector2D a ) where
|
||||
( Vector2D ( Point2D x1 y1 ) ) ^.^ ( Vector2D ( Point2D x2 y2 ) )
|
||||
( Vector2D x1 y1 ) ^.^ ( Vector2D x2 y2 )
|
||||
= x1 * x2 + y1 * y2
|
||||
|
||||
cross :: Num a => Vector2D a -> Vector2D a -> a
|
||||
cross ( Vector2D ( Point2D x1 y1 ) ) ( Vector2D ( Point2D x2 y2 ) )
|
||||
cross ( Vector2D x1 y1 ) ( Vector2D x2 y2 )
|
||||
= x1 * y2 - x2 * y1
|
||||
|
||||
data Mat22 a
|
||||
= Mat22 !a !a !a !a
|
||||
deriving stock ( Show, Eq, Generic, Functor, Foldable, Traversable )
|
||||
|
|
Loading…
Reference in a new issue