uvg266/src/sao.c

363 lines
13 KiB
C
Raw Normal View History

/**
* \file
*
* \author Marko Viitanen ( fador@iki.fi ),
* Tampere University of Technology,
* Department of Pervasive Computing.
* \author Ari Koivula ( ari@koivu.la ),
* Tampere University of Technology,
* Department of Pervasive Computing.
*/
#include "sao.h"
#include <string.h>
#include "picture.h"
void init_sao_info(sao_info *sao) {
sao->type = SAO_TYPE_NONE;
sao->merge_left_flag = 0;
sao->merge_up_flag = 0;
}
// Mapping of edge_idx values to eo-classes.
static const unsigned g_sao_eo_idx_to_eo_category[] = { 1, 2, 0, 3, 4 };
// Mapping relationships between a, b and c to eo_idx.
#define EO_IDX(a, b, c) (2 + SIGN3((c) - (a)) + SIGN3((c) - (b)))
/**
* \param orig_data Original pixel data. 64x64 for luma, 32x32 for chroma.
* \param rec_data Reconstructed pixel data. 64x64 for luma, 32x32 for chroma.
* \param dir_offsets
* \param is_chroma 0 for luma, 1 for chroma. Indicates
*/
void calc_sao_edge_dir(const pixel *orig_data, const pixel *rec_data,
int eo_class, int block_width, int block_height,
int cat_sum_cnt[2][NUM_SAO_EDGE_CATEGORIES])
{
int y, x;
vector2d a_ofs = g_sao_edge_offsets[eo_class][0];
vector2d b_ofs = g_sao_edge_offsets[eo_class][1];
// Arrays orig_data and rec_data are quarter size for chroma.
// Don't sample the edge pixels because this function doesn't have access to
// their neighbours.
for (y = 1; y < block_height - 1; ++y) {
for (x = 1; x < block_width - 1; ++x) {
const pixel *c_data = &rec_data[y * block_width + x];
pixel a = c_data[a_ofs.y * block_width + a_ofs.x];
pixel c = c_data[0];
pixel b = c_data[b_ofs.y * block_width + b_ofs.x];
int eo_idx = EO_IDX(a, b, c);
int eo_cat = g_sao_eo_idx_to_eo_category[eo_idx];
cat_sum_cnt[0][eo_cat] += orig_data[y * block_width + x] - c;
cat_sum_cnt[1][eo_cat] += 1;
}
}
}
void sao_reconstruct_color(const pixel *rec_data, pixel *new_rec_data, const sao_info *sao,
int stride, int new_stride, int block_width, int block_height)
{
int y, x;
vector2d a_ofs = g_sao_edge_offsets[sao->eo_class][0];
vector2d b_ofs = g_sao_edge_offsets[sao->eo_class][1];
// Arrays orig_data and rec_data are quarter size for chroma.
// Don't sample the edge pixels because this function doesn't have access to
// their neighbours.
2013-11-05 08:49:42 +00:00
for (y = 0; y < block_height; ++y) {
for (x = 0; x < block_width; ++x) {
const pixel *c_data = &rec_data[y * stride + x];
pixel *new_data = &new_rec_data[y * new_stride + x];
pixel a = c_data[a_ofs.y * stride + a_ofs.x];
pixel c = c_data[0];
pixel b = c_data[b_ofs.y * stride + b_ofs.x];
int eo_idx = EO_IDX(a, b, c);
int eo_cat = g_sao_eo_idx_to_eo_category[eo_idx];
new_data[0] = CLIP(0, (1 << BIT_DEPTH) - 1, c_data[0] + sao->offsets[eo_cat]);
}
}
}
/**
* \brief Calculate dimensions of the buffer used by sao reconstruction.
*
* This function calculates 4 vectors that can be used to make the temporary
* buffers required by sao_reconstruct_color.
*
* Vector block is the area affected by sao. Vectors tr and br are top-left
* margin and bottom-right margin, which contain pixels that are not modified
* by the reconstruction of this LCU but are needed by the reconstruction.
* Vector rec is the offset from the CU to the required pixel area.
*
* The margins are always either 0 or 1, depending on the direction of the
* edge offset class.
*
* This also takes into account borders of the picture and non-LCU sized
* CU's at the bottom and right of the picture.
*
* \ CU + rec
* +------+
* |\ tl |
* | +--+ |
* | |\ block
* | | \| |
* | +--+ |
* | \ br
* +------+
*
* \param pic Picture.
* \param sao Sao parameters.
* \param rec Top-left corner of the LCU, modified to be top-left corner of
*/
void sao_calc_block_dims(const picture *pic, color_index color_i,
const sao_info *sao, vector2d *rec,
vector2d *tl, vector2d *br, vector2d *block)
{
vector2d a_ofs = g_sao_edge_offsets[sao->eo_class][0];
vector2d b_ofs = g_sao_edge_offsets[sao->eo_class][1];
const int is_chroma = (color_i != COLOR_Y ? 1 : 0);
int width = pic->width >> is_chroma;
int height = pic->height >> is_chroma;
int block_width = LCU_WIDTH >> is_chroma;
// Handle top and left.
if (rec->y == 0) {
tl->y = 0;
if (a_ofs.y == -1 || b_ofs.y == -1) {
block->y -= 1;
tl->y += 1;
}
}
if (rec->x == 0) {
tl->x = 0;
if (a_ofs.x == -1 || b_ofs.x == -1) {
block->x -= 1;
tl->x += 1;
}
}
// Handle right and bottom, taking care of non-LCU sized CUs.
if (rec->y + block_width >= height) {
br->y = 0;
if (rec->y + block_width >= height) {
block->y = height - rec->y;
}
if (a_ofs.y == 1 || b_ofs.y == 1) {
block->y -= 1;
br->y += 1;
}
}
if (rec->x + block_width >= width) {
br->x = 0;
if (rec->x + block_width > width) {
block->x = width - rec->x;
}
2013-11-08 13:04:53 +00:00
if (a_ofs.x == 1 || b_ofs.x == 1) {
block->x -= 1;
br->x += 1;
}
}
rec->y = (rec->y == 0 ? 0 : -1);
rec->x = (rec->x == 0 ? 0 : -1);
}
void sao_reconstruct(picture *pic, const pixel *old_rec,
unsigned x_ctb, unsigned y_ctb,
const sao_info *sao, color_index color_i)
{
const int is_chroma = (color_i != COLOR_Y ? 1 : 0);
const int pic_stride = pic->width >> is_chroma;
const int lcu_stride = LCU_WIDTH >> is_chroma;
const int buf_stride = lcu_stride + 2;
pixel *recdata = (color_i == COLOR_Y ? pic->y_recdata :
(color_i == COLOR_U ? pic->u_recdata : pic->v_recdata));
pixel buf_rec[(LCU_WIDTH + 2) * (LCU_WIDTH + 2)];
pixel new_rec[LCU_WIDTH * LCU_WIDTH];
// Calling CU_TO_PIXEL with depth 1 is the same as using block size of 32.
pixel *lcu_rec = &recdata[CU_TO_PIXEL(x_ctb, y_ctb, is_chroma, pic_stride)];
const pixel *old_lcu_rec = &old_rec[CU_TO_PIXEL(x_ctb, y_ctb, is_chroma, pic_stride)];
vector2d ofs;
vector2d tl = { 1, 1 };
vector2d br = { 1, 1 };
vector2d block = { LCU_WIDTH, LCU_WIDTH };
if (sao->type == SAO_TYPE_NONE) {
return;
}
ofs.x = x_ctb * lcu_stride;
ofs.y = y_ctb * lcu_stride;
block.x = lcu_stride;
block.y = lcu_stride;
sao_calc_block_dims(pic, color_i, sao, &ofs, &tl, &br, &block);
// Data to tmp buffer.
picture_blit_pixels(&old_lcu_rec[ofs.y * pic_stride + ofs.x],
buf_rec,
tl.x + block.x + br.x,
tl.y + block.y + br.y,
pic_stride, buf_stride);
sao_reconstruct_color(&buf_rec[tl.y * buf_stride + tl.x],
&new_rec[(ofs.y + tl.y) * lcu_stride + ofs.x + tl.x],
sao,
buf_stride, lcu_stride,
block.x, block.y);
// Copy reconstructed block from tmp buffer to rec image.
picture_blit_pixels(&new_rec[(tl.y + ofs.y) * lcu_stride + (tl.x + ofs.x)],
&lcu_rec[(tl.y + ofs.y) * pic_stride + (tl.x + ofs.x)],
block.x, block.y, lcu_stride, pic_stride);
}
void sao_search_best_mode(const pixel *data[], const pixel *recdata[],
int block_width, int block_height,
unsigned buf_cnt,
sao_info *sao_out)
{
sao_eo_class edge_class;
// This array is used to calculate the mean offset used to minimize distortion.
int cat_sum_cnt[2][NUM_SAO_EDGE_CATEGORIES];
memset(cat_sum_cnt, 0, sizeof(int) * 2 * NUM_SAO_EDGE_CATEGORIES);
sao_out->ddistortion = INT_MAX;
for (edge_class = SAO_EO0; edge_class <= SAO_EO3; ++edge_class) {
int edge_offset[NUM_SAO_EDGE_CATEGORIES];
int sum_ddistortion = 0;
sao_eo_cat edge_cat;
unsigned i = 0;
// Call calc_sao_edge_dir once for luma and twice for chroma.
for (i = 0; i < buf_cnt; ++i) {
calc_sao_edge_dir(data[i], recdata[i], edge_class,
block_width, block_height, cat_sum_cnt);
}
for (edge_cat = SAO_EO_CAT1; edge_cat <= SAO_EO_CAT4; ++edge_cat) {
int cat_sum = cat_sum_cnt[0][edge_cat];
int cat_cnt = cat_sum_cnt[1][edge_cat];
// The optimum offset can be calculated by getting the minima of the
// fast ddistortion estimation formula. The minima is the mean error
// and we round that to the nearest integer.
int offset = 0;
if (cat_cnt != 0) {
offset = (cat_sum + (cat_cnt >> 1)) / cat_cnt;
offset = CLIP(-SAO_ABS_OFFSET_MAX, SAO_ABS_OFFSET_MAX, offset);
}
// Sharpening edge offsets can't be encoded, so set them to 0 here.
if (edge_cat >= SAO_EO_CAT1 && edge_cat <= SAO_EO_CAT2 && offset < 0) {
offset = 0;
}
if (edge_cat >= SAO_EO_CAT3 && edge_cat <= SAO_EO_CAT4 && offset > 0) {
offset = 0;
}
edge_offset[edge_cat] = offset;
// The ddistortion is amount by which the SSE of data changes. It should
// be negative for all categories, if offset was chosen correctly.
// ddistortion = N * h^2 - 2 * h * E, where N is the number of samples
// and E is the sum of errors.
// It basically says that all pixels that are not improved by offset
// increase increase SSE by h^2 and all pixels that are improved by
// offset decrease SSE by h*E.
sum_ddistortion += cat_cnt * offset * offset - 2 * offset * cat_sum;
}
// SAO is not applied for category 0.
edge_offset[SAO_EO_CAT0] = 0;
// Choose the offset class that offers the least error after offset.
if (sum_ddistortion < sao_out->ddistortion) {
sao_out->eo_class = edge_class;
sao_out->ddistortion = sum_ddistortion;
memcpy(sao_out->offsets, edge_offset, sizeof(int) * NUM_SAO_EDGE_CATEGORIES);
}
}
}
void sao_search_chroma(const picture *pic, unsigned x_ctb, unsigned y_ctb, sao_info *sao)
{
pixel orig_u[LCU_CHROMA_SIZE];
pixel rec_u[LCU_CHROMA_SIZE];
pixel orig_v[LCU_CHROMA_SIZE];
pixel rec_v[LCU_CHROMA_SIZE];
pixel *orig[2] = { orig_u, orig_v };
pixel *rec[2] = { rec_u, rec_v };
pixel *u_data = &pic->u_data[CU_TO_PIXEL(x_ctb, y_ctb, 1, pic->width / 2)];
pixel *u_recdata = &pic->u_recdata[CU_TO_PIXEL(x_ctb, y_ctb, 1, pic->width / 2)];
pixel *v_data = &pic->v_data[CU_TO_PIXEL(x_ctb, y_ctb, 1, pic->width / 2)];
pixel *v_recdata = &pic->v_recdata[CU_TO_PIXEL(x_ctb, y_ctb, 1, pic->width / 2)];
int block_width = (LCU_WIDTH / 2);
int block_height = (LCU_WIDTH / 2);
if (x_ctb * (LCU_WIDTH / 2) + (LCU_WIDTH / 2) >= (unsigned)pic->width / 2) {
block_width = (pic->width - x_ctb * LCU_WIDTH) / 2;
}
if (y_ctb * (LCU_WIDTH / 2) + (LCU_WIDTH / 2) >= (unsigned)pic->height / 2) {
block_height = (pic->height - y_ctb * LCU_WIDTH) / 2;
}
sao->type = SAO_TYPE_EDGE;
// Fill temporary buffers with picture data.
// These buffers are needed only until we switch to a LCU based data
// structure for pixels. Then we can give pointers directly to that structure
// without making copies.
picture_blit_pixels(u_data, orig_u, block_width, block_height,
pic->width / 2, LCU_WIDTH / 2);
picture_blit_pixels(v_data, orig_v, block_width, block_height,
pic->width / 2, LCU_WIDTH / 2);
picture_blit_pixels(u_recdata, rec_u, block_width, block_height,
pic->width / 2, LCU_WIDTH / 2);
picture_blit_pixels(v_recdata, rec_v, block_width, block_height,
pic->width / 2, LCU_WIDTH / 2);
sao_search_best_mode(orig, rec, block_width, block_height, 2, sao);
}
void sao_search_luma(const picture *pic, unsigned x_ctb, unsigned y_ctb, sao_info *sao)
{
pixel orig_y[LCU_LUMA_SIZE];
pixel rec_y[LCU_LUMA_SIZE];
pixel *orig[1] = { orig_y };
pixel *rec[1] = { rec_y };
pixel *y_data = &pic->y_data[CU_TO_PIXEL(x_ctb, y_ctb, 0, pic->width)];
pixel *y_recdata = &pic->y_recdata[CU_TO_PIXEL(x_ctb, y_ctb, 0, pic->width)];
int block_width = LCU_WIDTH;
int block_height = LCU_WIDTH;
if (x_ctb * LCU_WIDTH + LCU_WIDTH >= (unsigned)pic->width) {
block_width = pic->width - x_ctb * LCU_WIDTH;
}
if (y_ctb * LCU_WIDTH + LCU_WIDTH >= (unsigned)pic->height) {
block_height = pic->height - y_ctb * LCU_WIDTH;
}
sao->type = SAO_TYPE_EDGE;
// Fill temporary buffers with picture data.
// These buffers are needed only until we switch to a LCU based data
// structure for pixels. Then we can give pointers directly to that structure
// without making copies.
picture_blit_pixels(y_data, orig_y, block_width, block_height, pic->width, LCU_WIDTH);
picture_blit_pixels(y_recdata, rec_y, block_width, block_height, pic->width, LCU_WIDTH);
sao_search_best_mode(orig, rec, block_width, block_height, 1, sao);
}