uvg266/src/reshape.c

373 lines
12 KiB
C
Raw Normal View History

/*****************************************************************************
* This file is part of Kvazaar HEVC encoder.
*
* Copyright (C) 2013-2021 Tampere University of Technology and others (see
* COPYING file).
*
* Kvazaar is free software: you can redistribute it and/or modify it under
* the terms of the GNU Lesser General Public License as published by the
* Free Software Foundation; either version 2.1 of the License, or (at your
* option) any later version.
*
* Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with Kvazaar. If not, see <http://www.gnu.org/licenses/>.
****************************************************************************/
#include "reshape.h"
#include <limits.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include "cabac.h"
#include "rdo.h"
#include "strategies/strategies-sao.h"
#include "kvz_math.h"
void kvz_free_lmcs_aps(lmcs_aps* aps)
{
FREE_POINTER(aps->m_invLUT);
FREE_POINTER(aps->m_fwdLUT);
}
void kvz_init_lmcs_seq_stats(lmcs_seq_info* stats, int32_t m_binNum)
{
for (int i = 0; i < m_binNum; i++)
{
stats->binVar[i] = 0.0;
stats->binHist[i] = 0.0;
stats->normVar[i] = 0.0;
}
stats->nonZeroCnt = 0;
stats->weightVar = 0.0;
stats->weightNorm = 0.0;
stats->minBinVar = 0.0;
stats->maxBinVar = 0.0;
stats->meanBinVar = 0.0;
stats->ratioStdU = 0.0;
stats->ratioStdV = 0.0;
}
void kvz_init_lmcs_aps(lmcs_aps* aps, int picWidth, int picHeight, uint32_t maxCUWidth, uint32_t maxCUHeight, int bitDepth)
{
aps->m_lumaBD = bitDepth;
aps->m_reshapeLUTSize = 1 << aps->m_lumaBD;
aps->m_initCWAnalyze = aps->m_reshapeLUTSize / PIC_ANALYZE_CW_BINS;
aps->m_initCW = aps->m_reshapeLUTSize / PIC_CODE_CW_BINS;
aps->m_fwdLUT = calloc(1, sizeof(kvz_pixel) * aps->m_reshapeLUTSize);
aps->m_invLUT = calloc(1, sizeof(kvz_pixel) * aps->m_reshapeLUTSize);
memset(aps->m_binCW, 0, sizeof(uint16_t) * PIC_ANALYZE_CW_BINS);
memset(aps->m_binImportance, 0, sizeof(uint32_t) * PIC_ANALYZE_CW_BINS);
memset(aps->m_reshapePivot, 0, sizeof(kvz_pixel) * PIC_CODE_CW_BINS + 1);
memset(aps->m_inputPivot, 0, sizeof(kvz_pixel) * PIC_CODE_CW_BINS + 1);
for (int i = 0; i < PIC_CODE_CW_BINS; i++) {
aps->m_fwdScaleCoef[i] = 1 << FP_PREC;
}
for (int i = 0; i < PIC_CODE_CW_BINS; i++) {
aps->m_invScaleCoef[i] = 1 << FP_PREC;
}
for (int i = 0; i < PIC_CODE_CW_BINS; i++) {
aps->m_chromaAdjHelpLUT[i] = 1 << CSCALE_FP_PREC;
}
aps->m_sliceReshapeInfo.sliceReshaperEnableFlag = true;
aps->m_sliceReshapeInfo.enableChromaAdj = true;
aps->m_sliceReshapeInfo.sliceReshaperModelPresentFlag = true;
aps->m_sliceReshapeInfo.reshaperModelMinBinIdx = 0;
aps->m_sliceReshapeInfo.reshaperModelMaxBinIdx = PIC_CODE_CW_BINS - 1;
memset(aps->m_sliceReshapeInfo.reshaperModelBinCWDelta, 0, (PIC_CODE_CW_BINS) * sizeof(int));
aps->m_sliceReshapeInfo.chrResScalingOffset = 0;
aps->m_binNum = PIC_CODE_CW_BINS;
kvz_init_lmcs_seq_stats(&aps->m_srcSeqStats, aps->m_binNum);
kvz_init_lmcs_seq_stats(&aps->m_rspSeqStats, aps->m_binNum);
}
/**
-Perform picture analysis for SDR
\param pcPic describe pointer of current coding picture
\param sliceType describe the slice type
\param reshapeCW describe some input info
From VTM 12.1
*/
void kvz_calc_seq_stats(struct encoder_state_t* const state, const videoframe_t* frame, lmcs_seq_info* stats, lmcs_aps* aps)
{
const encoder_control_t* const encoder = state->encoder_control;
int32_t m_binNum = PIC_CODE_CW_BINS;
kvz_pixel* picY = &frame->source->y[CU_TO_PIXEL(0, 0, 0, frame->source->stride)];
const int width = frame->source->width;
const int height = frame->source->height;
const int stride = frame->source->stride;
uint32_t winLens = (m_binNum == PIC_CODE_CW_BINS) ? (MIN(height, width) / 240) : 2;
winLens = winLens > 0 ? winLens : 1;
int64_t tempSq = 0;
int64_t topSum = 0, topSumSq = 0;
int64_t leftSum = 0, leftSumSq = 0;
int64_t* leftColSum = malloc(sizeof(int64_t)*width);
int64_t* leftColSumSq = malloc(sizeof(int64_t) * width);
int64_t* topRowSum = malloc(sizeof(int64_t) * height);
int64_t* topRowSumSq = malloc(sizeof(int64_t) * height);
int64_t* topColSum = malloc(sizeof(int64_t) * width);
int64_t* topColSumSq = malloc(sizeof(int64_t) * width);
uint32_t* binCnt = malloc(sizeof(uint32_t)*m_binNum);
memset(leftColSum, 0, width * sizeof(int64_t));
memset(leftColSumSq, 0, width * sizeof(int64_t));
memset(topRowSum, 0, height * sizeof(int64_t));
memset(topRowSumSq, 0, height * sizeof(int64_t));
memset(topColSum, 0, width * sizeof(int64_t));
memset(topColSumSq, 0, width * sizeof(int64_t));
memset(binCnt, 0, m_binNum * sizeof(uint32_t));
kvz_init_lmcs_seq_stats(stats,m_binNum);
for (uint32_t y = 0; y < height; y++)
{
for (uint32_t x = 0; x < width; x++)
{
const kvz_pixel pxlY = picY[x];
int64_t sum = 0, sumSq = 0;
uint32_t numPixInPart = 0;
uint32_t y1 = MAX((int)(y - winLens), 0);
uint32_t y2 = MIN((int)(y + winLens), (height - 1));
uint32_t x1 = MAX((int)(x - winLens), 0);
uint32_t x2 = MIN((int)(x + winLens), (width - 1));
uint32_t bx = 0, by = 0;
const kvz_pixel* pWinY = &picY[0];
numPixInPart = (x2 - x1 + 1) * (y2 - y1 + 1);
if (x == 0 && y == 0)
{
for (by = y1; by <= y2; by++)
{
for (bx = x1; bx <= x2; bx++)
{
tempSq = (int64_t)pWinY[bx] * (int64_t)pWinY[bx];
leftSum += pWinY[bx];
leftSumSq += tempSq;
leftColSum[bx] += pWinY[bx];
leftColSumSq[bx] += tempSq;
topColSum[bx] += pWinY[bx];
topColSumSq[bx] += tempSq;
topRowSum[by] += pWinY[bx];
topRowSumSq[by] += tempSq;
}
pWinY += stride;
}
topSum = leftSum;
topSumSq = leftSumSq;
sum = leftSum;
sumSq = leftSumSq;
}
else if (x == 0 && y > 0)
{
if (y < height - winLens)
{
pWinY += winLens * stride;
topRowSum[y + winLens] = 0;
topRowSumSq[y + winLens] = 0;
for (bx = x1; bx <= x2; bx++)
{
topRowSum[y + winLens] += pWinY[bx];
topRowSumSq[y + winLens] += (int64_t)pWinY[bx] * (int64_t)pWinY[bx];
}
topSum += topRowSum[y + winLens];
topSumSq += topRowSumSq[y + winLens];
}
if (y > winLens)
{
topSum -= topRowSum[y - 1 - winLens];
topSumSq -= topRowSumSq[y - 1 - winLens];
}
memset(leftColSum, 0, width * sizeof(int64_t));
memset(leftColSumSq, 0, width * sizeof(int64_t));
pWinY = &picY[0];
pWinY -= (y <= winLens ? y : winLens) * stride;
for (by = y1; by <= y2; by++)
{
for (bx = x1; bx <= x2; bx++)
{
leftColSum[bx] += pWinY[bx];
leftColSumSq[bx] += (int64_t)pWinY[bx] * (int64_t)pWinY[bx];
}
pWinY += stride;
}
leftSum = topSum;
leftSumSq = topSumSq;
sum = topSum;
sumSq = topSumSq;
}
else if (x > 0)
{
if (x < width - winLens)
{
pWinY -= (y <= winLens ? y : winLens) * stride;
if (y == 0)
{
leftColSum[x + winLens] = 0;
leftColSumSq[x + winLens] = 0;
for (by = y1; by <= y2; by++)
{
leftColSum[x + winLens] += pWinY[x + winLens];
leftColSumSq[x + winLens] += (int64_t)pWinY[x + winLens] * (int64_t)pWinY[x + winLens];
pWinY += stride;
}
}
else
{
leftColSum[x + winLens] = topColSum[x + winLens];
leftColSumSq[x + winLens] = topColSumSq[x + winLens];
if (y < height - winLens)
{
pWinY = &picY[0];
pWinY += winLens * stride;
leftColSum[x + winLens] += pWinY[x + winLens];
leftColSumSq[x + winLens] += (int64_t)pWinY[x + winLens] * (int64_t)pWinY[x + winLens];
}
if (y > winLens)
{
pWinY = &picY[0];
pWinY -= (winLens + 1) * stride;
leftColSum[x + winLens] -= pWinY[x + winLens];
leftColSumSq[x + winLens] -= (int64_t)pWinY[x + winLens] * (int64_t)pWinY[x + winLens];
}
}
topColSum[x + winLens] = leftColSum[x + winLens];
topColSumSq[x + winLens] = leftColSumSq[x + winLens];
leftSum += leftColSum[x + winLens];
leftSumSq += leftColSumSq[x + winLens];
}
if (x > winLens)
{
leftSum -= leftColSum[x - 1 - winLens];
leftSumSq -= leftColSumSq[x - 1 - winLens];
}
sum = leftSum;
sumSq = leftSumSq;
}
double average = (double)(sum) / numPixInPart;
double variance = (double)(sumSq) / numPixInPart - average * average;
int binLen = aps->m_reshapeLUTSize / m_binNum;
uint32_t binIdx = (uint32_t)(pxlY / binLen);
if (aps->m_lumaBD > 10)
{
average = average / (double)(1 << (aps->m_lumaBD - 10));
variance = variance / (double)(1 << (2 * aps->m_lumaBD - 20));
}
else if (aps->m_lumaBD < 10)
{
average = average * (double)(1 << (10 - aps->m_lumaBD));
variance = variance * (double)(1 << (20 - 2 * aps->m_lumaBD));
}
double varLog10 = log10(variance + 1.0);
stats->binVar[binIdx] += varLog10;
binCnt[binIdx]++;
}
picY += stride;
}
for (int b = 0; b < m_binNum; b++)
{
stats->binHist[b] = (double)binCnt[b] / (double)(aps->m_reshapeCW.rspPicSize);
stats->binVar[b] = (binCnt[b] > 0) ? (stats->binVar[b] / binCnt[b]) : 0.0;
}
FREE_POINTER(binCnt);
FREE_POINTER(topColSum);
FREE_POINTER(topColSumSq);
FREE_POINTER(topRowSum);
FREE_POINTER(topRowSumSq);
FREE_POINTER(leftColSum);
FREE_POINTER(leftColSumSq);
stats->minBinVar = 5.0;
stats->maxBinVar = 0.0;
stats->meanBinVar = 0.0;
stats->nonZeroCnt = 0;
for (int b = 0; b < m_binNum; b++)
{
if (stats->binHist[b] > 0.001)
{
stats->nonZeroCnt++;
stats->meanBinVar += stats->binVar[b];
if (stats->binVar[b] > stats->maxBinVar) { stats->maxBinVar = stats->binVar[b]; }
if (stats->binVar[b] < stats->minBinVar) { stats->minBinVar = stats->binVar[b]; }
}
}
stats->meanBinVar /= (double)stats->nonZeroCnt;
for (int b = 0; b < m_binNum; b++)
{
if (stats->meanBinVar > 0.0)
{
stats->normVar[b] = stats->binVar[b] / stats->meanBinVar;
}
stats->weightVar += stats->binHist[b] * stats->binVar[b];
stats->weightNorm += stats->binHist[b] * stats->normVar[b];
}
picY = &frame->source->y[CU_TO_PIXEL(0, 0, 0, frame->source->stride)];
double avgY = 0.0;
double varY = 0.0;
for (int y = 0; y < height; y++)
{
for (int x = 0; x < width; x++)
{
avgY += picY[x];
varY += (double)picY[x] * (double)picY[x];
}
picY += stride;
}
avgY = avgY / (width * height);
varY = varY / (width * height) - avgY * avgY;
if (encoder->chroma_format != KVZ_CSP_400)
{
// ToDo: Handle other than YUV 4:2:0
assert(encoder->chroma_format == KVZ_CSP_420);
kvz_pixel* picU = &frame->source->u[CU_TO_PIXEL(0, 0, 0, frame->source->stride/2)];
kvz_pixel* picV = &frame->source->v[CU_TO_PIXEL(0, 0, 0, frame->source->stride / 2)];
const int widthC = frame->source->width/2;
const int heightC = frame->source->height/2;
const int strideC = frame->source->stride/2;
double avgU = 0.0, avgV = 0.0;
double varU = 0.0, varV = 0.0;
for (int y = 0; y < heightC; y++)
{
for (int x = 0; x < widthC; x++)
{
avgU += picU[x];
avgV += picV[x];
varU += (int64_t)picU[x] * (int64_t)picU[x];
varV += (int64_t)picV[x] * (int64_t)picV[x];
}
picU += strideC;
picV += strideC;
}
avgU = avgU / (widthC * heightC);
avgV = avgV / (widthC * heightC);
varU = varU / (widthC * heightC) - avgU * avgU;
varV = varV / (widthC * heightC) - avgV * avgV;
if (varY > 0)
{
stats->ratioStdU = sqrt(varU) / sqrt(varY);
stats->ratioStdV = sqrt(varV) / sqrt(varY);
}
}
}