uvg266/src/strategies/sse41/reg_sad_pow2_widths-sse41.h

1027 lines
46 KiB
C
Raw Normal View History

2019-02-18 15:52:47 +00:00
/*****************************************************************************
* This file is part of Kvazaar HEVC encoder.
*
* Copyright (C) 2013-2015 Tampere University of Technology and others (see
* COPYING file).
*
* Kvazaar is free software: you can redistribute it and/or modify it under
* the terms of the GNU Lesser General Public License as published by the
* Free Software Foundation; either version 2.1 of the License, or (at your
* option) any later version.
*
* Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with Kvazaar. If not, see <http://www.gnu.org/licenses/>.
****************************************************************************/
#ifndef REG_SAD_POW2_WIDTHS_SSE41_H_
#define REG_SAD_POW2_WIDTHS_SSE41_H_
#include <immintrin.h>
#include "kvazaar.h"
static INLINE uint32_t reg_sad_w0(const kvz_pixel * const data1, const kvz_pixel * const data2,
const int32_t height, const uint32_t stride1,
const uint32_t stride2)
{
return 0;
}
static INLINE uint32_t reg_sad_w4(const kvz_pixel * const data1, const kvz_pixel * const data2,
const int32_t height, const uint32_t stride1,
const uint32_t stride2)
{
__m128i sse_inc = _mm_setzero_si128();
int32_t y;
2019-01-16 19:48:18 +00:00
const int32_t height_fourline_groups = height & ~3;
const int32_t height_residual_lines = height & 3;
2019-01-16 19:48:18 +00:00
for (y = 0; y < height_fourline_groups; y += 4) {
__m128i a = _mm_cvtsi32_si128(*(uint32_t *)(data1 + y * stride1));
__m128i b = _mm_cvtsi32_si128(*(uint32_t *)(data2 + y * stride2));
a = _mm_insert_epi32(a, *(const uint32_t *)(data1 + (y + 1) * stride1), 1);
b = _mm_insert_epi32(b, *(const uint32_t *)(data2 + (y + 1) * stride2), 1);
a = _mm_insert_epi32(a, *(const uint32_t *)(data1 + (y + 2) * stride1), 2);
b = _mm_insert_epi32(b, *(const uint32_t *)(data2 + (y + 2) * stride2), 2);
a = _mm_insert_epi32(a, *(const uint32_t *)(data1 + (y + 3) * stride1), 3);
b = _mm_insert_epi32(b, *(const uint32_t *)(data2 + (y + 3) * stride2), 3);
__m128i curr_sads = _mm_sad_epu8(a, b);
sse_inc = _mm_add_epi64(sse_inc, curr_sads);
}
2019-01-16 19:48:18 +00:00
if (height_residual_lines) {
for (; y < height; y++) {
__m128i a = _mm_cvtsi32_si128(*(const uint32_t *)(data1 + y * stride1));
__m128i b = _mm_cvtsi32_si128(*(const uint32_t *)(data2 + y * stride2));
__m128i curr_sads = _mm_sad_epu8(a, b);
sse_inc = _mm_add_epi64(sse_inc, curr_sads);
}
}
__m128i sse_inc_2 = _mm_shuffle_epi32(sse_inc, _MM_SHUFFLE(1, 0, 3, 2));
__m128i sad = _mm_add_epi64 (sse_inc, sse_inc_2);
return _mm_cvtsi128_si32(sad);
}
static INLINE uint32_t reg_sad_w8(const kvz_pixel * const data1, const kvz_pixel * const data2,
const int32_t height, const uint32_t stride1,
const uint32_t stride2)
{
__m128i sse_inc = _mm_setzero_si128();
int32_t y;
const int32_t height_fourline_groups = height & ~3;
const int32_t height_residual_lines = height & 3;
for (y = 0; y < height_fourline_groups; y += 4) {
__m128d a_d = _mm_setzero_pd();
__m128d b_d = _mm_setzero_pd();
__m128d c_d = _mm_setzero_pd();
__m128d d_d = _mm_setzero_pd();
a_d = _mm_loadl_pd(a_d, (const double *)(data1 + (y + 0) * stride1));
b_d = _mm_loadl_pd(b_d, (const double *)(data2 + (y + 0) * stride2));
a_d = _mm_loadh_pd(a_d, (const double *)(data1 + (y + 1) * stride1));
b_d = _mm_loadh_pd(b_d, (const double *)(data2 + (y + 1) * stride2));
c_d = _mm_loadl_pd(c_d, (const double *)(data1 + (y + 2) * stride1));
d_d = _mm_loadl_pd(d_d, (const double *)(data2 + (y + 2) * stride2));
c_d = _mm_loadh_pd(c_d, (const double *)(data1 + (y + 3) * stride1));
d_d = _mm_loadh_pd(d_d, (const double *)(data2 + (y + 3) * stride2));
__m128i a = _mm_castpd_si128(a_d);
__m128i b = _mm_castpd_si128(b_d);
__m128i c = _mm_castpd_si128(c_d);
__m128i d = _mm_castpd_si128(d_d);
__m128i curr_sads_ab = _mm_sad_epu8(a, b);
__m128i curr_sads_cd = _mm_sad_epu8(c, d);
sse_inc = _mm_add_epi64(sse_inc, curr_sads_ab);
sse_inc = _mm_add_epi64(sse_inc, curr_sads_cd);
}
if (height_residual_lines) {
for (; y < height; y++) {
__m128i a = _mm_cvtsi64_si128(*(int64_t *)(data1 + y * stride1));
__m128i b = _mm_cvtsi64_si128(*(int64_t *)(data2 + y * stride2));
__m128i curr_sads_ab = _mm_sad_epu8(a, b);
sse_inc = _mm_add_epi64(sse_inc, curr_sads_ab);
}
}
__m128i sse_inc_2 = _mm_shuffle_epi32(sse_inc, _MM_SHUFFLE(1, 0, 3, 2));
__m128i sad = _mm_add_epi64 (sse_inc, sse_inc_2);
return _mm_cvtsi128_si32(sad);
}
static INLINE uint32_t reg_sad_w12(const kvz_pixel * const data1, const kvz_pixel * const data2,
const int32_t height, const uint32_t stride1,
const uint32_t stride2)
{
__m128i sse_inc = _mm_setzero_si128();
int32_t y;
for (y = 0; y < height; y++) {
__m128i a = _mm_loadu_si128((const __m128i *)(data1 + y * stride1));
__m128i b = _mm_loadu_si128((const __m128i *)(data2 + y * stride2));
__m128i b_masked = _mm_blend_epi16(a, b, 0x3f);
__m128i curr_sads = _mm_sad_epu8 (a, b_masked);
sse_inc = _mm_add_epi64(sse_inc, curr_sads);
}
__m128i sse_inc_2 = _mm_shuffle_epi32(sse_inc, _MM_SHUFFLE(1, 0, 3, 2));
__m128i sad = _mm_add_epi64 (sse_inc, sse_inc_2);
return _mm_cvtsi128_si32(sad);
}
static INLINE uint32_t reg_sad_w16(const kvz_pixel * const data1, const kvz_pixel * const data2,
const int32_t height, const uint32_t stride1,
const uint32_t stride2)
{
__m128i sse_inc = _mm_setzero_si128();
int32_t y;
const int32_t height_fourline_groups = height & ~3;
const int32_t height_residual_lines = height & 3;
for (y = 0; y < height_fourline_groups; y += 4) {
__m128i a = _mm_loadu_si128((const __m128i *)(data1 + (y + 0) * stride1));
__m128i b = _mm_loadu_si128((const __m128i *)(data2 + (y + 0) * stride2));
__m128i c = _mm_loadu_si128((const __m128i *)(data1 + (y + 1) * stride1));
__m128i d = _mm_loadu_si128((const __m128i *)(data2 + (y + 1) * stride2));
__m128i e = _mm_loadu_si128((const __m128i *)(data1 + (y + 2) * stride1));
__m128i f = _mm_loadu_si128((const __m128i *)(data2 + (y + 2) * stride2));
__m128i g = _mm_loadu_si128((const __m128i *)(data1 + (y + 3) * stride1));
__m128i h = _mm_loadu_si128((const __m128i *)(data2 + (y + 3) * stride2));
__m128i curr_sads_ab = _mm_sad_epu8(a, b);
__m128i curr_sads_cd = _mm_sad_epu8(c, d);
__m128i curr_sads_ef = _mm_sad_epu8(e, f);
__m128i curr_sads_gh = _mm_sad_epu8(g, h);
sse_inc = _mm_add_epi64(sse_inc, curr_sads_ab);
sse_inc = _mm_add_epi64(sse_inc, curr_sads_cd);
sse_inc = _mm_add_epi64(sse_inc, curr_sads_ef);
sse_inc = _mm_add_epi64(sse_inc, curr_sads_gh);
}
if (height_residual_lines) {
for (; y < height; y++) {
__m128i a = _mm_loadu_si128((const __m128i *)(data1 + (y + 0) * stride1));
__m128i b = _mm_loadu_si128((const __m128i *)(data2 + (y + 0) * stride2));
__m128i curr_sads = _mm_sad_epu8(a, b);
sse_inc = _mm_add_epi64(sse_inc, curr_sads);
}
}
__m128i sse_inc_2 = _mm_shuffle_epi32(sse_inc, _MM_SHUFFLE(1, 0, 3, 2));
__m128i sad = _mm_add_epi64 (sse_inc, sse_inc_2);
return _mm_cvtsi128_si32(sad);
}
static INLINE uint32_t reg_sad_w24(const kvz_pixel * const data1, const kvz_pixel * const data2,
const int32_t height, const uint32_t stride1,
const uint32_t stride2)
{
__m128i sse_inc = _mm_setzero_si128();
int32_t y;
const int32_t height_doublelines = height & ~1;
const int32_t height_parity = height & 1;
for (y = 0; y < height_doublelines; y += 2) {
__m128i a = _mm_loadu_si128((const __m128i *)(data1 + (y + 0) * stride1));
__m128i b = _mm_loadu_si128((const __m128i *)(data2 + (y + 0) * stride2));
__m128i c = _mm_loadu_si128((const __m128i *)(data1 + (y + 1) * stride1));
__m128i d = _mm_loadu_si128((const __m128i *)(data2 + (y + 1) * stride2));
__m128d e_d = _mm_setzero_pd();
__m128d f_d = _mm_setzero_pd();
e_d = _mm_loadl_pd(e_d, (const double *)(data1 + (y + 0) * stride1 + 16));
f_d = _mm_loadl_pd(f_d, (const double *)(data2 + (y + 0) * stride2 + 16));
e_d = _mm_loadh_pd(e_d, (const double *)(data1 + (y + 1) * stride1 + 16));
f_d = _mm_loadh_pd(f_d, (const double *)(data2 + (y + 1) * stride2 + 16));
__m128i e = _mm_castpd_si128(e_d);
__m128i f = _mm_castpd_si128(f_d);
__m128i curr_sads_1 = _mm_sad_epu8(a, b);
__m128i curr_sads_2 = _mm_sad_epu8(c, d);
__m128i curr_sads_3 = _mm_sad_epu8(e, f);
sse_inc = _mm_add_epi64(sse_inc, curr_sads_1);
sse_inc = _mm_add_epi64(sse_inc, curr_sads_2);
sse_inc = _mm_add_epi64(sse_inc, curr_sads_3);
}
if (height_parity) {
__m128i a = _mm_loadu_si128 ((const __m128i *) (data1 + y * stride1));
__m128i b = _mm_loadu_si128 ((const __m128i *) (data2 + y * stride2));
2019-01-24 13:25:45 +00:00
__m128i c = _mm_cvtsi64_si128(*(const uint64_t *)(data1 + y * stride1 + 16));
__m128i d = _mm_cvtsi64_si128(*(const uint64_t *)(data2 + y * stride2 + 16));
__m128i curr_sads_1 = _mm_sad_epu8(a, b);
__m128i curr_sads_2 = _mm_sad_epu8(c, d);
sse_inc = _mm_add_epi64(sse_inc, curr_sads_1);
sse_inc = _mm_add_epi64(sse_inc, curr_sads_2);
}
__m128i sse_inc_2 = _mm_shuffle_epi32(sse_inc, _MM_SHUFFLE(1, 0, 3, 2));
__m128i sad = _mm_add_epi64 (sse_inc, sse_inc_2);
return _mm_cvtsi128_si32(sad);
}
static INLINE uint32_t reg_sad_arbitrary(const kvz_pixel * const data1, const kvz_pixel * const data2,
const int32_t width, const int32_t height, const uint32_t stride1,
const uint32_t stride2)
{
int32_t y, x;
__m128i sse_inc = _mm_setzero_si128();
// Bytes in block in 128-bit blocks per each scanline, and remainder
2019-01-16 19:48:18 +00:00
const int32_t width_xmms = width & ~15;
const int32_t width_residual_pixels = width & 15;
2019-01-16 19:35:33 +00:00
const int32_t height_fourline_groups = height & ~3;
const int32_t height_residual_lines = height & 3;
2019-01-16 19:48:18 +00:00
const __m128i rds = _mm_set1_epi8 (width_residual_pixels);
const __m128i ns = _mm_setr_epi8 (0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15);
const __m128i rdmask = _mm_cmpgt_epi8(rds, ns);
2019-01-16 19:48:18 +00:00
for (x = 0; x < width_xmms; x += 16) {
2019-01-16 19:35:33 +00:00
for (y = 0; y < height_fourline_groups; y += 4) {
__m128i a = _mm_loadu_si128((const __m128i *)(data1 + (y + 0) * stride1 + x));
__m128i b = _mm_loadu_si128((const __m128i *)(data2 + (y + 0) * stride2 + x));
__m128i c = _mm_loadu_si128((const __m128i *)(data1 + (y + 1) * stride1 + x));
__m128i d = _mm_loadu_si128((const __m128i *)(data2 + (y + 1) * stride2 + x));
__m128i e = _mm_loadu_si128((const __m128i *)(data1 + (y + 2) * stride1 + x));
__m128i f = _mm_loadu_si128((const __m128i *)(data2 + (y + 2) * stride2 + x));
__m128i g = _mm_loadu_si128((const __m128i *)(data1 + (y + 3) * stride1 + x));
__m128i h = _mm_loadu_si128((const __m128i *)(data2 + (y + 3) * stride2 + x));
__m128i curr_sads_ab = _mm_sad_epu8(a, b);
__m128i curr_sads_cd = _mm_sad_epu8(c, d);
__m128i curr_sads_ef = _mm_sad_epu8(e, f);
__m128i curr_sads_gh = _mm_sad_epu8(g, h);
sse_inc = _mm_add_epi64(sse_inc, curr_sads_ab);
sse_inc = _mm_add_epi64(sse_inc, curr_sads_cd);
sse_inc = _mm_add_epi64(sse_inc, curr_sads_ef);
sse_inc = _mm_add_epi64(sse_inc, curr_sads_gh);
}
if (height_residual_lines) {
for (; y < height; y++) {
__m128i a = _mm_loadu_si128((const __m128i *)(data1 + y * stride1 + x));
__m128i b = _mm_loadu_si128((const __m128i *)(data2 + y * stride2 + x));
__m128i curr_sads = _mm_sad_epu8(a, b);
sse_inc = _mm_add_epi64(sse_inc, curr_sads);
}
}
}
2019-01-16 19:48:18 +00:00
if (width_residual_pixels) {
2019-01-16 19:35:33 +00:00
for (y = 0; y < height_fourline_groups; y += 4) {
__m128i a = _mm_loadu_si128((const __m128i *)(data1 + (y + 0) * stride1 + x));
__m128i b = _mm_loadu_si128((const __m128i *)(data2 + (y + 0) * stride2 + x));
__m128i c = _mm_loadu_si128((const __m128i *)(data1 + (y + 1) * stride1 + x));
__m128i d = _mm_loadu_si128((const __m128i *)(data2 + (y + 1) * stride2 + x));
__m128i e = _mm_loadu_si128((const __m128i *)(data1 + (y + 2) * stride1 + x));
__m128i f = _mm_loadu_si128((const __m128i *)(data2 + (y + 2) * stride2 + x));
__m128i g = _mm_loadu_si128((const __m128i *)(data1 + (y + 3) * stride1 + x));
__m128i h = _mm_loadu_si128((const __m128i *)(data2 + (y + 3) * stride2 + x));
__m128i b_masked = _mm_blendv_epi8(a, b, rdmask);
__m128i d_masked = _mm_blendv_epi8(c, d, rdmask);
__m128i f_masked = _mm_blendv_epi8(e, f, rdmask);
__m128i h_masked = _mm_blendv_epi8(g, h, rdmask);
__m128i curr_sads_ab = _mm_sad_epu8 (a, b_masked);
__m128i curr_sads_cd = _mm_sad_epu8 (c, d_masked);
__m128i curr_sads_ef = _mm_sad_epu8 (e, f_masked);
__m128i curr_sads_gh = _mm_sad_epu8 (g, h_masked);
sse_inc = _mm_add_epi64(sse_inc, curr_sads_ab);
sse_inc = _mm_add_epi64(sse_inc, curr_sads_cd);
sse_inc = _mm_add_epi64(sse_inc, curr_sads_ef);
sse_inc = _mm_add_epi64(sse_inc, curr_sads_gh);
}
2019-01-16 19:35:33 +00:00
if (height_residual_lines) {
for (; y < height; y++) {
__m128i a = _mm_loadu_si128((const __m128i *)(data1 + y * stride1 + x));
__m128i b = _mm_loadu_si128((const __m128i *)(data2 + y * stride2 + x));
__m128i b_masked = _mm_blendv_epi8(a, b, rdmask);
__m128i curr_sads = _mm_sad_epu8 (a, b_masked);
sse_inc = _mm_add_epi64(sse_inc, curr_sads);
}
}
}
__m128i sse_inc_2 = _mm_shuffle_epi32(sse_inc, _MM_SHUFFLE(1, 0, 3, 2));
__m128i sad = _mm_add_epi64 (sse_inc, sse_inc_2);
return _mm_cvtsi128_si32(sad);
}
static uint32_t ver_sad_w4(const kvz_pixel *pic_data, const kvz_pixel *ref_data,
int32_t height, uint32_t stride)
{
__m128i ref_row = _mm_set1_epi32(*(const uint32_t *)ref_data);
__m128i sse_inc = _mm_setzero_si128();
int32_t y;
const int32_t height_fourline_groups = height & ~3;
const int32_t height_residual_lines = height & 3;
for (y = 0; y < height_fourline_groups; y += 4) {
__m128i a = _mm_cvtsi32_si128(*(uint32_t *)(pic_data + y * stride));
a = _mm_insert_epi32(a, *(const uint32_t *)(pic_data + (y + 1) * stride), 1);
a = _mm_insert_epi32(a, *(const uint32_t *)(pic_data + (y + 2) * stride), 2);
a = _mm_insert_epi32(a, *(const uint32_t *)(pic_data + (y + 3) * stride), 3);
__m128i curr_sads = _mm_sad_epu8(a, ref_row);
sse_inc = _mm_add_epi64(sse_inc, curr_sads);
}
if (height_residual_lines) {
// Only pick the last dword, because we're comparing single dwords (lines)
ref_row = _mm_bsrli_si128(ref_row, 12);
for (; y < height; y++) {
__m128i a = _mm_cvtsi32_si128(*(const uint32_t *)(pic_data + y * stride));
__m128i curr_sads = _mm_sad_epu8(a, ref_row);
sse_inc = _mm_add_epi64(sse_inc, curr_sads);
}
}
__m128i sse_inc_2 = _mm_shuffle_epi32(sse_inc, _MM_SHUFFLE(1, 0, 3, 2));
__m128i sad = _mm_add_epi64 (sse_inc, sse_inc_2);
return _mm_cvtsi128_si32(sad);
}
static uint32_t ver_sad_w8(const kvz_pixel *pic_data, const kvz_pixel *ref_data,
int32_t height, uint32_t stride)
{
const __m128i ref_row = _mm_set1_epi64x(*(const uint64_t *)ref_data);
__m128i sse_inc = _mm_setzero_si128();
int32_t y;
const int32_t height_fourline_groups = height & ~3;
const int32_t height_residual_lines = height & 3;
for (y = 0; y < height_fourline_groups; y += 4) {
__m128d a_d = _mm_setzero_pd();
__m128d c_d = _mm_setzero_pd();
a_d = _mm_loadl_pd(a_d, (const double *)(pic_data + (y + 0) * stride));
a_d = _mm_loadh_pd(a_d, (const double *)(pic_data + (y + 1) * stride));
c_d = _mm_loadl_pd(c_d, (const double *)(pic_data + (y + 2) * stride));
c_d = _mm_loadh_pd(c_d, (const double *)(pic_data + (y + 3) * stride));
__m128i a = _mm_castpd_si128(a_d);
__m128i c = _mm_castpd_si128(c_d);
__m128i curr_sads_ab = _mm_sad_epu8(a, ref_row);
__m128i curr_sads_cd = _mm_sad_epu8(c, ref_row);
sse_inc = _mm_add_epi64(sse_inc, curr_sads_ab);
sse_inc = _mm_add_epi64(sse_inc, curr_sads_cd);
}
if (height_residual_lines) {
__m128i b = _mm_move_epi64(ref_row);
for (; y < height; y++) {
__m128i a = _mm_cvtsi64_si128(*(int64_t *)(pic_data + y * stride));
__m128i curr_sads_ab = _mm_sad_epu8(a, b);
sse_inc = _mm_add_epi64(sse_inc, curr_sads_ab);
}
}
__m128i sse_inc_2 = _mm_shuffle_epi32(sse_inc, _MM_SHUFFLE(1, 0, 3, 2));
__m128i sad = _mm_add_epi64 (sse_inc, sse_inc_2);
return _mm_cvtsi128_si32(sad);
}
static uint32_t ver_sad_w12(const kvz_pixel *pic_data, const kvz_pixel *ref_data,
int32_t height, uint32_t stride)
{
const __m128i ref_row = _mm_loadu_si128((__m128i *)ref_data);
__m128i sse_inc = _mm_setzero_si128();
int32_t y;
for (y = 0; y < height; y++) {
__m128i a = _mm_loadu_si128((const __m128i *)(pic_data + y * stride));
__m128i a_masked = _mm_blend_epi16(ref_row, a, 0x3f);
__m128i curr_sads = _mm_sad_epu8 (ref_row, a_masked);
sse_inc = _mm_add_epi64(sse_inc, curr_sads);
}
__m128i sse_inc_2 = _mm_shuffle_epi32(sse_inc, _MM_SHUFFLE(1, 0, 3, 2));
__m128i sad = _mm_add_epi64 (sse_inc, sse_inc_2);
return _mm_cvtsi128_si32(sad);
}
static uint32_t ver_sad_w16(const kvz_pixel *pic_data, const kvz_pixel *ref_data,
int32_t height, uint32_t stride)
{
const __m128i ref_row = _mm_loadu_si128((__m128i *)ref_data);
__m128i sse_inc = _mm_setzero_si128();
int32_t y;
const int32_t height_fourline_groups = height & ~3;
const int32_t height_residual_lines = height & 3;
for (y = 0; y < height_fourline_groups; y += 4) {
__m128i pic_row_1 = _mm_loadu_si128((__m128i *)(pic_data + (y + 0) * stride));
__m128i pic_row_2 = _mm_loadu_si128((__m128i *)(pic_data + (y + 1) * stride));
__m128i pic_row_3 = _mm_loadu_si128((__m128i *)(pic_data + (y + 2) * stride));
__m128i pic_row_4 = _mm_loadu_si128((__m128i *)(pic_data + (y + 3) * stride));
__m128i curr_sads_1 = _mm_sad_epu8 (pic_row_1, ref_row);
__m128i curr_sads_2 = _mm_sad_epu8 (pic_row_2, ref_row);
__m128i curr_sads_3 = _mm_sad_epu8 (pic_row_3, ref_row);
__m128i curr_sads_4 = _mm_sad_epu8 (pic_row_4, ref_row);
sse_inc = _mm_add_epi64(sse_inc, curr_sads_1);
sse_inc = _mm_add_epi64(sse_inc, curr_sads_2);
sse_inc = _mm_add_epi64(sse_inc, curr_sads_3);
sse_inc = _mm_add_epi64(sse_inc, curr_sads_4);
}
if (height_residual_lines) {
for (; y < height; y++) {
__m128i pic_row = _mm_loadu_si128((__m128i *)(pic_data + (y + 0) * stride));
__m128i curr_sads = _mm_sad_epu8 (pic_row, ref_row);
sse_inc = _mm_add_epi64(sse_inc, curr_sads);
}
}
__m128i sse_inc_2 = _mm_shuffle_epi32(sse_inc, _MM_SHUFFLE(1, 0, 3, 2));
__m128i sad = _mm_add_epi64 (sse_inc, sse_inc_2);
return _mm_cvtsi128_si32(sad);
}
static uint32_t ver_sad_arbitrary(const kvz_pixel *pic_data, const kvz_pixel *ref_data,
int32_t width, int32_t height, uint32_t stride)
{
int32_t y, x;
__m128i sse_inc = _mm_setzero_si128();
// Bytes in block in 128-bit blocks per each scanline, and remainder
const int32_t width_xmms = width & ~15;
const int32_t width_residual_pixels = width & 15;
const int32_t height_fourline_groups = height & ~3;
const int32_t height_residual_lines = height & 3;
const __m128i rds = _mm_set1_epi8 (width_residual_pixels);
const __m128i ns = _mm_setr_epi8 (0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15);
const __m128i rdmask = _mm_cmpgt_epi8(rds, ns);
for (x = 0; x < width_xmms; x += 16) {
const __m128i ref_row = _mm_loadu_si128((__m128i *)(ref_data + x));
for (y = 0; y < height_fourline_groups; y += 4) {
__m128i a = _mm_loadu_si128((const __m128i *)(pic_data + (y + 0) * stride + x));
__m128i c = _mm_loadu_si128((const __m128i *)(pic_data + (y + 1) * stride + x));
__m128i e = _mm_loadu_si128((const __m128i *)(pic_data + (y + 2) * stride + x));
__m128i g = _mm_loadu_si128((const __m128i *)(pic_data + (y + 3) * stride + x));
__m128i curr_sads_ab = _mm_sad_epu8(ref_row, a);
__m128i curr_sads_cd = _mm_sad_epu8(ref_row, c);
__m128i curr_sads_ef = _mm_sad_epu8(ref_row, e);
__m128i curr_sads_gh = _mm_sad_epu8(ref_row, g);
sse_inc = _mm_add_epi64(sse_inc, curr_sads_ab);
sse_inc = _mm_add_epi64(sse_inc, curr_sads_cd);
sse_inc = _mm_add_epi64(sse_inc, curr_sads_ef);
sse_inc = _mm_add_epi64(sse_inc, curr_sads_gh);
}
if (height_residual_lines) {
for (; y < height; y++) {
__m128i a = _mm_loadu_si128((const __m128i *)(pic_data + y * stride + x));
__m128i curr_sads = _mm_sad_epu8(a, ref_row);
sse_inc = _mm_add_epi64(sse_inc, curr_sads);
}
}
}
if (width_residual_pixels) {
const __m128i ref_row = _mm_loadu_si128((__m128i *)(ref_data + x));
for (y = 0; y < height_fourline_groups; y += 4) {
__m128i a = _mm_loadu_si128((const __m128i *)(pic_data + (y + 0) * stride + x));
__m128i c = _mm_loadu_si128((const __m128i *)(pic_data + (y + 1) * stride + x));
__m128i e = _mm_loadu_si128((const __m128i *)(pic_data + (y + 2) * stride + x));
__m128i g = _mm_loadu_si128((const __m128i *)(pic_data + (y + 3) * stride + x));
__m128i a_masked = _mm_blendv_epi8(ref_row, a, rdmask);
__m128i c_masked = _mm_blendv_epi8(ref_row, c, rdmask);
__m128i e_masked = _mm_blendv_epi8(ref_row, e, rdmask);
__m128i g_masked = _mm_blendv_epi8(ref_row, g, rdmask);
__m128i curr_sads_ab = _mm_sad_epu8 (ref_row, a_masked);
__m128i curr_sads_cd = _mm_sad_epu8 (ref_row, c_masked);
__m128i curr_sads_ef = _mm_sad_epu8 (ref_row, e_masked);
__m128i curr_sads_gh = _mm_sad_epu8 (ref_row, g_masked);
sse_inc = _mm_add_epi64(sse_inc, curr_sads_ab);
sse_inc = _mm_add_epi64(sse_inc, curr_sads_cd);
sse_inc = _mm_add_epi64(sse_inc, curr_sads_ef);
sse_inc = _mm_add_epi64(sse_inc, curr_sads_gh);
}
if (height_residual_lines) {
for (; y < height; y++) {
__m128i a = _mm_loadu_si128((const __m128i *)(pic_data + y * stride + x));
__m128i a_masked = _mm_blendv_epi8(ref_row, a, rdmask);
__m128i curr_sads = _mm_sad_epu8 (ref_row, a_masked);
sse_inc = _mm_add_epi64(sse_inc, curr_sads);
}
}
}
__m128i sse_inc_2 = _mm_shuffle_epi32(sse_inc, _MM_SHUFFLE(1, 0, 3, 2));
__m128i sad = _mm_add_epi64 (sse_inc, sse_inc_2);
return _mm_cvtsi128_si32(sad);
}
2019-01-31 18:33:41 +00:00
static uint32_t hor_sad_sse41_w4(const kvz_pixel *pic_data, const kvz_pixel *ref_data,
int32_t height, uint32_t pic_stride, uint32_t ref_stride,
uint32_t left, uint32_t right)
{
const int32_t right_border_idx = 3 - right;
const int32_t border_idx = left ? left : right_border_idx;
const __m128i ns = _mm_setr_epi8(0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15);
const int32_t border_idx_negative = border_idx >> 31;
const int32_t leftoff = border_idx_negative | left;
2019-01-31 18:33:41 +00:00
// Dualword (ie. line) base indexes, ie. the edges the lines read will be
// clamped towards
2019-01-31 18:33:41 +00:00
const __m128i dwbaseids = _mm_setr_epi8(0, 0, 0, 0, 4, 4, 4, 4,
8, 8, 8, 8, 12, 12, 12, 12);
__m128i right_border_idxs = _mm_set1_epi8((int8_t)right_border_idx);
__m128i left_128 = _mm_set1_epi8((int8_t)left);
right_border_idxs = _mm_add_epi8 (right_border_idxs, dwbaseids);
__m128i mask_right = _mm_min_epi8 (ns, right_border_idxs);
__m128i mask1 = _mm_sub_epi8 (mask_right, left_128);
const __m128i epol_mask = _mm_max_epi8(mask1, dwbaseids);
const int32_t height_fourline_groups = height & ~3;
const int32_t height_residual_lines = height & 3;
__m128i sse_inc = _mm_setzero_si128();
int32_t y;
for (y = 0; y < height_fourline_groups; y += 4) {
__m128i a = _mm_cvtsi32_si128(*(const uint32_t *)(pic_data + y * pic_stride));
2019-01-31 18:33:41 +00:00
__m128i b = _mm_cvtsi32_si128(*(const uint32_t *)(ref_data + y * ref_stride + leftoff));
2019-01-31 18:33:41 +00:00
a = _mm_insert_epi32(a, *(const uint32_t *)(pic_data + (y + 1) * pic_stride), 1);
b = _mm_insert_epi32(b, *(const uint32_t *)(ref_data + (y + 1) * ref_stride + leftoff), 1);
a = _mm_insert_epi32(a, *(const uint32_t *)(pic_data + (y + 2) * pic_stride), 2);
b = _mm_insert_epi32(b, *(const uint32_t *)(ref_data + (y + 2) * ref_stride + leftoff), 2);
a = _mm_insert_epi32(a, *(const uint32_t *)(pic_data + (y + 3) * pic_stride), 3);
b = _mm_insert_epi32(b, *(const uint32_t *)(ref_data + (y + 3) * ref_stride + leftoff), 3);
__m128i b_epol = _mm_shuffle_epi8(b, epol_mask);
__m128i curr_sads = _mm_sad_epu8 (a, b_epol);
sse_inc = _mm_add_epi64 (sse_inc, curr_sads);
}
if (height_residual_lines) {
for (; y < height; y++) {
__m128i a = _mm_cvtsi32_si128(*(const uint32_t *)(pic_data + y * pic_stride));
2019-01-31 18:33:41 +00:00
__m128i b = _mm_cvtsi32_si128(*(const uint32_t *)(ref_data + y * ref_stride + leftoff));
__m128i b_epol = _mm_shuffle_epi8(b, epol_mask);
__m128i curr_sads = _mm_sad_epu8 (a, b_epol);
sse_inc = _mm_add_epi64(sse_inc, curr_sads);
}
}
__m128i sse_inc_2 = _mm_shuffle_epi32(sse_inc, _MM_SHUFFLE(1, 0, 3, 2));
__m128i sad = _mm_add_epi64 (sse_inc, sse_inc_2);
return _mm_cvtsi128_si32(sad);
}
static uint32_t hor_sad_sse41_w8(const kvz_pixel *pic_data, const kvz_pixel *ref_data,
int32_t height, uint32_t pic_stride, uint32_t ref_stride,
uint32_t left, uint32_t right)
{
// right is the number of overhanging pixels in the vector, so it has to be
// handled this way to produce the index of last valid (border) pixel
const int32_t right_border_idx = 7 - right;
const int32_t border_idx = left ? left : right_border_idx;
const __m128i ns = _mm_setr_epi8(0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15);
// Quadword (ie. line) base indexes, ie. the edges the lines read will be
// clamped towards; higher qword (lower line) bytes tend towards 8 and lower
// qword (higher line) bytes towards 0
const __m128i qwbaseids = _mm_setr_epi8(0, 0, 0, 0, 0, 0, 0, 0,
8, 8, 8, 8, 8, 8, 8, 8);
// Dirty hack alert! If right == block_width (ie. the entire vector is
// outside the frame), move the block offset one pixel to the left (so
// that the leftmost pixel in vector is actually the valid border pixel
// from which we want to extrapolate), and use an epol mask that will
// simply stretch the pixel all over the vector.
//
// To avoid a branch here:
// The mask will be -1 (0xffffffff) for border_idx -1 and 0 for >= 0
const int32_t border_idx_negative = border_idx >> 31;
const int32_t leftoff = border_idx_negative | left;
__m128i right_border_idxs = _mm_set1_epi8((int8_t)right_border_idx);
__m128i left_128 = _mm_set1_epi8((int8_t)left);
right_border_idxs = _mm_add_epi8 (right_border_idxs, qwbaseids);
// If we're straddling the left border, right_border_idx is 7 and the first
// operation does nothing. If right border, left is 0 and the second
// operation does nothing.
__m128i mask_right = _mm_min_epi8 (ns, right_border_idxs);
__m128i mask1 = _mm_sub_epi8 (mask_right, left_128);
// If right == 8 (we're completely outside the frame), right_border_idx is
// -1 and so is mask1. Clamp negative values to qwbaseid and as discussed
// earlier, adjust the load offset instead to load the "-1'st" pixels and
// using qwbaseids as the shuffle mask, broadcast it all over the rows.
const __m128i epol_mask = _mm_max_epi8(mask1, qwbaseids);
const int32_t height_fourline_groups = height & ~3;
const int32_t height_residual_lines = height & 3;
__m128i sse_inc = _mm_setzero_si128();
int32_t y;
for (y = 0; y < height_fourline_groups; y += 4) {
__m128d a_d = _mm_setzero_pd();
__m128d b_d = _mm_setzero_pd();
__m128d c_d = _mm_setzero_pd();
__m128d d_d = _mm_setzero_pd();
a_d = _mm_loadl_pd(a_d, (const double *)(pic_data + (y + 0) * pic_stride));
b_d = _mm_loadl_pd(b_d, (const double *)(ref_data + (y + 0) * ref_stride + leftoff));
a_d = _mm_loadh_pd(a_d, (const double *)(pic_data + (y + 1) * pic_stride));
b_d = _mm_loadh_pd(b_d, (const double *)(ref_data + (y + 1) * ref_stride + leftoff));
c_d = _mm_loadl_pd(c_d, (const double *)(pic_data + (y + 2) * pic_stride));
d_d = _mm_loadl_pd(d_d, (const double *)(ref_data + (y + 2) * ref_stride + leftoff));
c_d = _mm_loadh_pd(c_d, (const double *)(pic_data + (y + 3) * pic_stride));
d_d = _mm_loadh_pd(d_d, (const double *)(ref_data + (y + 3) * ref_stride + leftoff));
__m128i a = _mm_castpd_si128(a_d);
__m128i b = _mm_castpd_si128(b_d);
__m128i c = _mm_castpd_si128(c_d);
__m128i d = _mm_castpd_si128(d_d);
__m128i b_epol = _mm_shuffle_epi8(b, epol_mask);
__m128i d_epol = _mm_shuffle_epi8(d, epol_mask);
__m128i curr_sads_ab = _mm_sad_epu8(a, b_epol);
__m128i curr_sads_cd = _mm_sad_epu8(c, d_epol);
sse_inc = _mm_add_epi64(sse_inc, curr_sads_ab);
sse_inc = _mm_add_epi64(sse_inc, curr_sads_cd);
}
if (height_residual_lines) {
for (; y < height; y++) {
__m128i a = _mm_cvtsi64_si128(*(int64_t *)(pic_data + y * pic_stride));
__m128i b = _mm_cvtsi64_si128(*(int64_t *)(ref_data + y * ref_stride + leftoff));
__m128i b_epol = _mm_shuffle_epi8(b, epol_mask);
__m128i curr_sads_ab = _mm_sad_epu8(a, b_epol);
sse_inc = _mm_add_epi64(sse_inc, curr_sads_ab);
}
}
__m128i sse_inc_2 = _mm_shuffle_epi32(sse_inc, _MM_SHUFFLE(1, 0, 3, 2));
__m128i sad = _mm_add_epi64 (sse_inc, sse_inc_2);
return _mm_cvtsi128_si32(sad);
}
/*
* left and right measure how many pixels of one horizontal scanline will be
* outside either the left or the right screen border. For blocks straddling
* the left border, read the scanlines starting from the left border instead,
* and use the extrapolation mask to essentially move the pixels right while
* copying the left border pixel to the vector positions that logically point
* outside of the buffer.
*
* For blocks straddling the right border, just read over the right border,
* and extrapolate all pixels beyond the border idx to copy the value of the
* border pixel. An exception is right == width (leftmost reference pixel is
* one place right from the right border, it's ugly because the pixel to
* extrapolate from is located at relative X offset -1), abuse the left border
* aligning functionality instead to actually read starting from the valid
* border pixel, and use a suitable mask to fill all the other pixels with
* that value.
*/
static uint32_t hor_sad_sse41_w16(const kvz_pixel *pic_data, const kvz_pixel *ref_data,
int32_t height, uint32_t pic_stride, uint32_t ref_stride,
const uint32_t left, const uint32_t right)
{
// right is the number of overhanging pixels in the vector, so it has to be
// handled this way to produce the index of last valid (border) pixel
const int32_t right_border_idx = 15 - right;
const int32_t border_idx = left ? left : right_border_idx;
const __m128i ns = _mm_setr_epi8(0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15);
const __m128i zero = _mm_setzero_si128();
// Dirty hack alert! If right == block_width (ie. the entire vector is
// outside the frame), move the block offset one pixel to the left (so
// that the leftmost pixel in vector is actually the valid border pixel
// from which we want to extrapolate), and use an epol mask that will
// simply stretch the pixel all over the vector.
//
// To avoid a branch here:
// The mask will be -1 (0xffffffff) for border_idx -1 and 0 for >= 0
const int32_t border_idx_negative = border_idx >> 31;
const int32_t leftoff = border_idx_negative | left;
__m128i right_border_idxs = _mm_set1_epi8((int8_t)right_border_idx);
__m128i left_128 = _mm_set1_epi8((int8_t)left);
// If we're straddling the left border, right_border_idx is 15 and the first
// operation does nothing. If right border, left is 0 and the second
// operation does nothing.
__m128i mask_right = _mm_min_epi8 (ns, right_border_idxs);
__m128i mask1 = _mm_sub_epi8 (mask_right, left_128);
// If right == 16 (we're completely outside the frame), right_border_idx is
// -1 and so is mask1. Clamp negative values to zero and as discussed
// earlier, adjust the load offset instead to load the "-1'st" pixel and
// using an all-zero shuffle mask, broadcast it all over the vector.
const __m128i epol_mask = _mm_max_epi8(mask1, zero);
const int32_t height_fourline_groups = height & ~3;
const int32_t height_residual_lines = height & 3;
__m128i sse_inc = _mm_setzero_si128();
int32_t y;
for (y = 0; y < height_fourline_groups; y += 4) {
__m128i a = _mm_loadu_si128((__m128i *)(pic_data + (y + 0) * pic_stride));
__m128i b = _mm_loadu_si128((__m128i *)(ref_data + (y + 0) * ref_stride + leftoff));
__m128i c = _mm_loadu_si128((__m128i *)(pic_data + (y + 1) * pic_stride));
__m128i d = _mm_loadu_si128((__m128i *)(ref_data + (y + 1) * ref_stride + leftoff));
__m128i e = _mm_loadu_si128((__m128i *)(pic_data + (y + 2) * pic_stride));
__m128i f = _mm_loadu_si128((__m128i *)(ref_data + (y + 2) * ref_stride + leftoff));
__m128i g = _mm_loadu_si128((__m128i *)(pic_data + (y + 3) * pic_stride));
__m128i h = _mm_loadu_si128((__m128i *)(ref_data + (y + 3) * ref_stride + leftoff));
__m128i b_epol = _mm_shuffle_epi8(b, epol_mask);
__m128i d_epol = _mm_shuffle_epi8(d, epol_mask);
__m128i f_epol = _mm_shuffle_epi8(f, epol_mask);
__m128i h_epol = _mm_shuffle_epi8(h, epol_mask);
__m128i curr_sads_ab = _mm_sad_epu8(a, b_epol);
__m128i curr_sads_cd = _mm_sad_epu8(c, d_epol);
__m128i curr_sads_ef = _mm_sad_epu8(e, f_epol);
__m128i curr_sads_gh = _mm_sad_epu8(g, h_epol);
sse_inc = _mm_add_epi64(sse_inc, curr_sads_ab);
sse_inc = _mm_add_epi64(sse_inc, curr_sads_cd);
sse_inc = _mm_add_epi64(sse_inc, curr_sads_ef);
sse_inc = _mm_add_epi64(sse_inc, curr_sads_gh);
}
if (height_residual_lines) {
for (; y < height; y++) {
__m128i a = _mm_loadu_si128((__m128i *)(pic_data + (y + 0) * pic_stride));
__m128i b = _mm_loadu_si128((__m128i *)(ref_data + (y + 0) * ref_stride + leftoff));
__m128i b_epol = _mm_shuffle_epi8(b, epol_mask);
__m128i curr_sads = _mm_sad_epu8(a, b_epol);
sse_inc = _mm_add_epi64(sse_inc, curr_sads);
}
}
__m128i sse_inc_2 = _mm_shuffle_epi32(sse_inc, _MM_SHUFFLE(1, 0, 3, 2));
__m128i sad = _mm_add_epi64 (sse_inc, sse_inc_2);
return _mm_cvtsi128_si32(sad);
}
static INLINE uint32_t hor_sad_sse41_arbitrary(const kvz_pixel *pic_data, const kvz_pixel *ref_data,
int32_t width, int32_t height, uint32_t pic_stride,
uint32_t ref_stride, uint32_t left, uint32_t right)
{
__m128i sse_inc = _mm_setzero_si128();
const size_t vec_width = 16;
const size_t vecwid_bitmask = 15;
const size_t vec_width_log2 = 4;
const int32_t height_fourline_groups = height & ~3;
const int32_t height_residual_lines = height & 3;
const __m128i rights = _mm_set1_epi8((uint8_t)right);
const __m128i blk_widths = _mm_set1_epi8((uint8_t)width);
const __m128i vec_widths = _mm_set1_epi8((uint8_t)vec_width);
const __m128i nslo = _mm_setr_epi8(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);
uint32_t outside_vecs, inside_vecs, left_offset, is_left_bm;
int32_t outside_width, inside_width, border_off, invec_lstart,
invec_lend, invec_linc;
if (left) {
outside_vecs = left >> vec_width_log2;
inside_vecs = (( width + vecwid_bitmask) >> vec_width_log2) - outside_vecs;
outside_width = outside_vecs * vec_width;
inside_width = inside_vecs * vec_width;
left_offset = left;
border_off = left;
invec_lstart = 0;
invec_lend = inside_vecs;
invec_linc = 1;
is_left_bm = -1;
} else {
inside_vecs = ((width - right) + vecwid_bitmask) >> vec_width_log2;
outside_vecs = (( width + vecwid_bitmask) >> vec_width_log2) - inside_vecs;
outside_width = outside_vecs * vec_width;
inside_width = inside_vecs * vec_width;
left_offset = right - width;
border_off = width - 1 - right;
invec_lstart = inside_vecs - 1;
invec_lend = -1;
invec_linc = -1;
is_left_bm = 0;
}
left_offset &= vecwid_bitmask;
const __m128i left_offsets = _mm_set1_epi8 ((uint8_t)left_offset);
const __m128i is_left = _mm_cmpeq_epi8(rights, _mm_setzero_si128());
const __m128i vw_for_left = _mm_and_si128 (is_left, vec_widths);
// -x == (x ^ 0xff) + 1 = (x ^ 0xff) - 0xff. Also x == (x ^ 0x00) - 0x00.
// in other words, calculate inverse of left_offsets if is_left is true.
const __m128i offs_neg = _mm_xor_si128 (left_offsets, is_left);
const __m128i offs_for_sm1 = _mm_sub_epi8 (offs_neg, is_left);
const __m128i ns_for_sm1 = _mm_or_si128 (vw_for_left, nslo);
const __m128i shufmask1 = _mm_add_epi8 (ns_for_sm1, offs_for_sm1);
const __m128i mo2bmask_l = _mm_cmpgt_epi8(left_offsets, nslo);
const __m128i mo2bimask_l = _mm_cmpeq_epi8(mo2bmask_l, _mm_setzero_si128());
const __m128i mo2bimask_r = _mm_cmpgt_epi8(vec_widths, shufmask1);
const __m128i move_old_to_b_imask = _mm_blendv_epi8(mo2bimask_r, mo2bimask_l, is_left);
const int32_t outvec_offset = (~is_left_bm) & inside_width;
int32_t x, y;
for (y = 0; y < height_fourline_groups; y += 4) {
__m128i borderpx_vec_b = _mm_set1_epi8(ref_data[(int32_t)((y + 0) * ref_stride + border_off)]);
__m128i borderpx_vec_d = _mm_set1_epi8(ref_data[(int32_t)((y + 1) * ref_stride + border_off)]);
__m128i borderpx_vec_f = _mm_set1_epi8(ref_data[(int32_t)((y + 2) * ref_stride + border_off)]);
__m128i borderpx_vec_h = _mm_set1_epi8(ref_data[(int32_t)((y + 3) * ref_stride + border_off)]);
for (x = 0; x < outside_vecs; x++) {
__m128i a = _mm_loadu_si128((__m128i *)(pic_data + x * vec_width + (y + 0) * pic_stride + outvec_offset));
__m128i c = _mm_loadu_si128((__m128i *)(pic_data + x * vec_width + (y + 1) * pic_stride + outvec_offset));
__m128i e = _mm_loadu_si128((__m128i *)(pic_data + x * vec_width + (y + 2) * pic_stride + outvec_offset));
__m128i g = _mm_loadu_si128((__m128i *)(pic_data + x * vec_width + (y + 3) * pic_stride + outvec_offset));
__m128i startoffs = _mm_set1_epi8 ((x + inside_vecs) << vec_width_log2);
__m128i ns = _mm_add_epi8 (startoffs, nslo);
// Unread imask is (is_left NOR unrd_imask_for_right), do the maths etc
__m128i unrd_imask = _mm_cmpgt_epi8 (blk_widths, ns);
unrd_imask = _mm_or_si128 (unrd_imask, is_left);
__m128i unrd_mask = _mm_cmpeq_epi8 (unrd_imask, _mm_setzero_si128());
__m128i b_unread = _mm_blendv_epi8(borderpx_vec_b, a, unrd_mask);
__m128i d_unread = _mm_blendv_epi8(borderpx_vec_d, c, unrd_mask);
__m128i f_unread = _mm_blendv_epi8(borderpx_vec_f, e, unrd_mask);
__m128i h_unread = _mm_blendv_epi8(borderpx_vec_h, g, unrd_mask);
__m128i sad_ab = _mm_sad_epu8 (a, b_unread);
__m128i sad_cd = _mm_sad_epu8 (c, d_unread);
__m128i sad_ef = _mm_sad_epu8 (e, f_unread);
__m128i sad_gh = _mm_sad_epu8 (g, h_unread);
sse_inc = _mm_add_epi64(sse_inc, sad_ab);
sse_inc = _mm_add_epi64(sse_inc, sad_cd);
sse_inc = _mm_add_epi64(sse_inc, sad_ef);
sse_inc = _mm_add_epi64(sse_inc, sad_gh);
}
int32_t a_off = outside_width & is_left_bm;
int32_t leftoff_with_sign_neg = (left_offset ^ is_left_bm) - is_left_bm;
__m128i old_b = borderpx_vec_b;
__m128i old_d = borderpx_vec_d;
__m128i old_f = borderpx_vec_f;
__m128i old_h = borderpx_vec_h;
for (x = invec_lstart; x != invec_lend; x += invec_linc) {
__m128i a = _mm_loadu_si128((__m128i *)(pic_data + x * vec_width + (y + 0) * pic_stride + a_off));
__m128i c = _mm_loadu_si128((__m128i *)(pic_data + x * vec_width + (y + 1) * pic_stride + a_off));
__m128i e = _mm_loadu_si128((__m128i *)(pic_data + x * vec_width + (y + 2) * pic_stride + a_off));
__m128i g = _mm_loadu_si128((__m128i *)(pic_data + x * vec_width + (y + 3) * pic_stride + a_off));
__m128i b = _mm_loadu_si128((__m128i *)(ref_data + x * vec_width + (y + 0) * ref_stride + a_off - leftoff_with_sign_neg));
__m128i d = _mm_loadu_si128((__m128i *)(ref_data + x * vec_width + (y + 1) * ref_stride + a_off - leftoff_with_sign_neg));
__m128i f = _mm_loadu_si128((__m128i *)(ref_data + x * vec_width + (y + 2) * ref_stride + a_off - leftoff_with_sign_neg));
__m128i h = _mm_loadu_si128((__m128i *)(ref_data + x * vec_width + (y + 3) * ref_stride + a_off - leftoff_with_sign_neg));
__m128i b_shifted = _mm_shuffle_epi8(b, shufmask1);
__m128i d_shifted = _mm_shuffle_epi8(d, shufmask1);
__m128i f_shifted = _mm_shuffle_epi8(f, shufmask1);
__m128i h_shifted = _mm_shuffle_epi8(h, shufmask1);
__m128i b_with_old = _mm_blendv_epi8 (old_b, b_shifted, move_old_to_b_imask);
__m128i d_with_old = _mm_blendv_epi8 (old_d, d_shifted, move_old_to_b_imask);
__m128i f_with_old = _mm_blendv_epi8 (old_f, f_shifted, move_old_to_b_imask);
__m128i h_with_old = _mm_blendv_epi8 (old_h, h_shifted, move_old_to_b_imask);
uint8_t startoff = (x << vec_width_log2) + a_off;
__m128i startoffs = _mm_set1_epi8 (startoff);
__m128i curr_ns = _mm_add_epi8 (startoffs, nslo);
__m128i unrd_imask = _mm_cmpgt_epi8 (blk_widths, curr_ns);
__m128i unrd_mask = _mm_cmpeq_epi8 (unrd_imask, _mm_setzero_si128());
__m128i b_unread = _mm_blendv_epi8 (b_with_old, a, unrd_mask);
__m128i d_unread = _mm_blendv_epi8 (d_with_old, c, unrd_mask);
__m128i f_unread = _mm_blendv_epi8 (f_with_old, e, unrd_mask);
__m128i h_unread = _mm_blendv_epi8 (h_with_old, g, unrd_mask);
old_b = b_shifted;
old_d = d_shifted;
old_f = f_shifted;
old_h = h_shifted;
__m128i sad_ab = _mm_sad_epu8(a, b_unread);
__m128i sad_cd = _mm_sad_epu8(c, d_unread);
__m128i sad_ef = _mm_sad_epu8(e, f_unread);
__m128i sad_gh = _mm_sad_epu8(g, h_unread);
sse_inc = _mm_add_epi64(sse_inc, sad_ab);
sse_inc = _mm_add_epi64(sse_inc, sad_cd);
sse_inc = _mm_add_epi64(sse_inc, sad_ef);
sse_inc = _mm_add_epi64(sse_inc, sad_gh);
}
}
if (height_residual_lines) {
for (; y < height; y++) {
__m128i borderpx_vec = _mm_set1_epi8(ref_data[(int32_t)((y + 0) * ref_stride + border_off)]);
for (x = 0; x < outside_vecs; x++) {
__m128i a = _mm_loadu_si128((__m128i *)(pic_data + x * vec_width + (y + 0) * pic_stride + outvec_offset));
__m128i startoffs = _mm_set1_epi8 ((x + inside_vecs) << vec_width_log2);
__m128i ns = _mm_add_epi8 (startoffs, nslo);
// Unread imask is (is_left NOR unrd_imask_for_right), do the maths etc
__m128i unrd_imask = _mm_cmpgt_epi8 (blk_widths, ns);
unrd_imask = _mm_or_si128 (unrd_imask, is_left);
__m128i unrd_mask = _mm_cmpeq_epi8 (unrd_imask, _mm_setzero_si128());
__m128i b_unread = _mm_blendv_epi8(borderpx_vec, a, unrd_mask);
__m128i sad_ab = _mm_sad_epu8 (a, b_unread);
sse_inc = _mm_add_epi64(sse_inc, sad_ab);
}
int32_t a_off = outside_width & is_left_bm;
int32_t leftoff_with_sign_neg = (left_offset ^ is_left_bm) - is_left_bm;
__m128i old_b = borderpx_vec;
for (x = invec_lstart; x != invec_lend; x += invec_linc) {
__m128i a = _mm_loadu_si128((__m128i *)(pic_data + x * vec_width + (y + 0) * pic_stride + a_off));
__m128i b = _mm_loadu_si128((__m128i *)(ref_data + x * vec_width + (y + 0) * ref_stride + a_off - leftoff_with_sign_neg));
__m128i b_shifted = _mm_shuffle_epi8(b, shufmask1);
__m128i b_with_old = _mm_blendv_epi8 (old_b, b_shifted, move_old_to_b_imask);
uint8_t startoff = (x << vec_width_log2) + a_off;
__m128i startoffs = _mm_set1_epi8 (startoff);
__m128i curr_ns = _mm_add_epi8 (startoffs, nslo);
__m128i unrd_imask = _mm_cmpgt_epi8 (blk_widths, curr_ns);
__m128i unrd_mask = _mm_cmpeq_epi8 (unrd_imask, _mm_setzero_si128());
__m128i b_unread = _mm_blendv_epi8 (b_with_old, a, unrd_mask);
old_b = b_shifted;
__m128i sad_ab = _mm_sad_epu8(a, b_unread);
sse_inc = _mm_add_epi64(sse_inc, sad_ab);
}
}
}
__m128i sse_inc_2 = _mm_shuffle_epi32(sse_inc, _MM_SHUFFLE(1, 0, 3, 2));
__m128i sad = _mm_add_epi64 (sse_inc, sse_inc_2);
return _mm_cvtsi128_si32(sad);
}
#endif