Improve intra SAD AVX2 intrinsics.

- Moved implementations for different sizes to inline functions that are
  defined using each other, reducing the amount of redundant code.

- Performance of sad_8bit_32x32_avx2 improved by about 10% due to unrolling of
  the loop.
This commit is contained in:
Ari Koivula 2014-07-25 15:59:55 +03:00
parent 9f5bcf45eb
commit 669e99dd7f

View file

@ -28,20 +28,66 @@
# include <immintrin.h> # include <immintrin.h>
static unsigned sad_8bit_8x8_avx2(const pixel *buf1, const pixel *buf2) /**
* \brief Calculate SAD for 8x8 bytes in continuous memory.
*/
static INLINE __m256i inline_8bit_sad_8x8_avx2(const __m256i *const a, const __m256i *const b)
{ {
__m256i sum; __m256i sum0, sum1;
{ sum0 = _mm256_sad_epu8(_mm256_load_si256(a + 0), _mm256_load_si256(b + 0));
// Get SADs for 8x8 pixels and add the results hierarchically into sum0. sum1 = _mm256_sad_epu8(_mm256_load_si256(a + 1), _mm256_load_si256(b + 1));
const __m256i *const a = (const __m256i *)buf1;
const __m256i *const b = (const __m256i *)buf2;
__m256i sum0, sum1; return _mm256_add_epi32(sum0, sum1);
sum0 = _mm256_sad_epu8(_mm256_load_si256(a + 0), _mm256_load_si256(b + 0)); }
sum1 = _mm256_sad_epu8(_mm256_load_si256(a + 1), _mm256_load_si256(b + 1));
sum = _mm256_add_epi32(sum0, sum1);
}
/**
* \brief Calculate SAD for 16x16 bytes in continuous memory.
*/
static INLINE __m256i inline_8bit_sad_16x16_avx2(const __m256i *const a, const __m256i *const b)
{
const unsigned size_of_8x8 = 8 * 8 / sizeof(__m256i);
// Calculate in 4 chunks of 16x4.
__m256i sum0, sum1, sum2, sum3;
sum0 = inline_8bit_sad_8x8_avx2(a + 0 * size_of_8x8, b + 0 * size_of_8x8);
sum1 = inline_8bit_sad_8x8_avx2(a + 1 * size_of_8x8, b + 1 * size_of_8x8);
sum2 = inline_8bit_sad_8x8_avx2(a + 2 * size_of_8x8, b + 2 * size_of_8x8);
sum3 = inline_8bit_sad_8x8_avx2(a + 3 * size_of_8x8, b + 3 * size_of_8x8);
sum0 = _mm256_add_epi32(sum0, sum1);
sum2 = _mm256_add_epi32(sum2, sum3);
return _mm256_add_epi32(sum0, sum2);
}
/**
* \brief Calculate SAD for 32x32 bytes in continuous memory.
*/
static INLINE __m256i inline_8bit_sad_32x32_avx2(const __m256i *const a, const __m256i *const b)
{
const unsigned size_of_16x16 = 16 * 16 / sizeof(__m256i);
// Calculate in 4 chunks of 32x8.
__m256i sum0, sum1, sum2, sum3;
sum0 = inline_8bit_sad_16x16_avx2(a + 0 * size_of_16x16, b + 0 * size_of_16x16);
sum1 = inline_8bit_sad_16x16_avx2(a + 1 * size_of_16x16, b + 1 * size_of_16x16);
sum2 = inline_8bit_sad_16x16_avx2(a + 2 * size_of_16x16, b + 2 * size_of_16x16);
sum3 = inline_8bit_sad_16x16_avx2(a + 3 * size_of_16x16, b + 3 * size_of_16x16);
sum0 = _mm256_add_epi32(sum0, sum1);
sum2 = _mm256_add_epi32(sum2, sum3);
return _mm256_add_epi32(sum0, sum2);
}
/**
* \brief Get sum of the low 32 bits of four 64 bit numbers from __m256i as uint32_t.
*/
static INLINE uint32_t m256i_horizontal_sum(const __m256i sum)
{
// Add the high 128 bits to low 128 bits. // Add the high 128 bits to low 128 bits.
__m128i mm128_result = _mm_add_epi32(_mm256_castsi256_si128(sum), _mm256_extractf128_si256(sum, 1)); __m128i mm128_result = _mm_add_epi32(_mm256_castsi256_si128(sum), _mm256_extractf128_si256(sum, 1));
// Add the high 64 bits to low 64 bits. // Add the high 64 bits to low 64 bits.
@ -51,87 +97,42 @@ static unsigned sad_8bit_8x8_avx2(const pixel *buf1, const pixel *buf2)
} }
static unsigned sad_8bit_8x8_avx2(const pixel *buf1, const pixel *buf2)
{
const __m256i *const a = (const __m256i *)buf1;
const __m256i *const b = (const __m256i *)buf2;
__m256i sum = inline_8bit_sad_8x8_avx2(a, b);
return m256i_horizontal_sum(sum);
}
static unsigned sad_8bit_16x16_avx2(const pixel *buf1, const pixel *buf2) static unsigned sad_8bit_16x16_avx2(const pixel *buf1, const pixel *buf2)
{ {
__m256i sum; const __m256i *const a = (const __m256i *)buf1;
{ const __m256i *const b = (const __m256i *)buf2;
// Get SADs for 16x16 pixels and add the results hierarchically into sum. __m256i sum = inline_8bit_sad_16x16_avx2(a, b);
const __m256i *const a = (const __m256i *)buf1;
const __m256i *const b = (const __m256i *)buf2;
__m256i sum0, sum1, sum2, sum3, sum4, sum5, sum6, sum7; return m256i_horizontal_sum(sum);
sum0 = _mm256_sad_epu8(_mm256_load_si256(a + 0), _mm256_load_si256(b + 0));
sum1 = _mm256_sad_epu8(_mm256_load_si256(a + 1), _mm256_load_si256(b + 1));
sum2 = _mm256_sad_epu8(_mm256_load_si256(a + 2), _mm256_load_si256(b + 2));
sum3 = _mm256_sad_epu8(_mm256_load_si256(a + 3), _mm256_load_si256(b + 3));
sum4 = _mm256_sad_epu8(_mm256_load_si256(a + 4), _mm256_load_si256(b + 4));
sum5 = _mm256_sad_epu8(_mm256_load_si256(a + 5), _mm256_load_si256(b + 5));
sum6 = _mm256_sad_epu8(_mm256_load_si256(a + 6), _mm256_load_si256(b + 6));
sum7 = _mm256_sad_epu8(_mm256_load_si256(a + 7), _mm256_load_si256(b + 7));
sum0 = _mm256_add_epi32(sum0, sum1);
sum2 = _mm256_add_epi32(sum2, sum3);
sum4 = _mm256_add_epi32(sum4, sum5);
sum6 = _mm256_add_epi32(sum6, sum7);
sum0 = _mm256_add_epi32(sum0, sum2);
sum4 = _mm256_add_epi32(sum4, sum6);
sum = _mm256_add_epi32(sum0, sum4);
}
// Add the high 128 bits to low 128 bits.
__m128i mm128_result = _mm_add_epi32(_mm256_castsi256_si128(sum), _mm256_extractf128_si256(sum, 1));
// Add the high 64 bits to low 64 bits.
uint32_t result[4];
_mm_storeu_si128((__m128i*)result, mm128_result);
return result[0] + result[2];
} }
static unsigned sad_8bit_32x32_avx2(const pixel *buf1, const pixel *buf2) static unsigned sad_8bit_32x32_avx2(const pixel *buf1, const pixel *buf2)
{ {
// Do 32x32 in 4 blocks. const __m256i *const a = (const __m256i *)buf1;
__m256i sum = _mm256_setzero_si256(); const __m256i *const b = (const __m256i *)buf2;
for (int i = 0; i < 32; i += 8) {
// Get SADs for 32x8 pixels and add the results hierarchically into sum.
const __m256i *const a = (const __m256i *)buf1 + i;
const __m256i *const b = (const __m256i *)buf2 + i;
__m256i sum0, sum1, sum2, sum3, sum4, sum5, sum6, sum7; __m256i sum = inline_8bit_sad_32x32_avx2(a, b);
sum0 = _mm256_sad_epu8(_mm256_load_si256(a + 0), _mm256_load_si256(b + 0));
sum1 = _mm256_sad_epu8(_mm256_load_si256(a + 1), _mm256_load_si256(b + 1));
sum2 = _mm256_sad_epu8(_mm256_load_si256(a + 2), _mm256_load_si256(b + 2));
sum3 = _mm256_sad_epu8(_mm256_load_si256(a + 3), _mm256_load_si256(b + 3));
sum4 = _mm256_sad_epu8(_mm256_load_si256(a + 4), _mm256_load_si256(b + 4));
sum5 = _mm256_sad_epu8(_mm256_load_si256(a + 5), _mm256_load_si256(b + 5));
sum6 = _mm256_sad_epu8(_mm256_load_si256(a + 6), _mm256_load_si256(b + 6));
sum7 = _mm256_sad_epu8(_mm256_load_si256(a + 7), _mm256_load_si256(b + 7));
sum0 = _mm256_add_epi32(sum0, sum1); return m256i_horizontal_sum(sum);
sum2 = _mm256_add_epi32(sum2, sum3);
sum4 = _mm256_add_epi32(sum4, sum5);
sum6 = _mm256_add_epi32(sum6, sum7);
sum0 = _mm256_add_epi32(sum0, sum2);
sum4 = _mm256_add_epi32(sum4, sum6);
sum = _mm256_add_epi32(sum, sum0);
sum = _mm256_add_epi32(sum, sum4);
}
// Add the high 128 bits to low 128 bits.
__m128i mm128_result = _mm_add_epi32(_mm256_castsi256_si128(sum), _mm256_extractf128_si256(sum, 1));
// Add the high 64 bits to low 64 bits.
uint32_t result[4];
_mm_storeu_si128((__m128i*)result, mm128_result);
return result[0] + result[2];
} }
#endif //COMPILE_INTEL_AVX2 #endif //COMPILE_INTEL_AVX2
int strategy_register_picture_avx2(void* opaque) { int strategy_register_picture_avx2(void* opaque)
{
bool success = true; bool success = true;
#if COMPILE_INTEL_AVX2 #if COMPILE_INTEL_AVX2
success &= strategyselector_register(opaque, "sad_8bit_8x8", "avx2", 40, &sad_8bit_8x8_avx2); success &= strategyselector_register(opaque, "sad_8bit_8x8", "avx2", 40, &sad_8bit_8x8_avx2);