mirror of
https://github.com/ultravideo/uvg266.git
synced 2024-11-28 03:34:06 +00:00
261 lines
8.3 KiB
C
261 lines
8.3 KiB
C
/**
|
|
* \file
|
|
*
|
|
* \author Marko Viitanen ( fador@iki.fi ),
|
|
* Tampere University of Technology,
|
|
* Department of Pervasive Computing.
|
|
* \author Ari Koivula ( ari@koivu.la ),
|
|
* Tampere University of Technology,
|
|
* Department of Pervasive Computing.
|
|
*/
|
|
|
|
#include "inter.h"
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include "config.h"
|
|
|
|
|
|
/**
|
|
* \brief Set block info to the CU structure
|
|
* \param pic picture to use
|
|
* \param x_cu x CU position (smallest CU)
|
|
* \param y_cu y CU position (smallest CU)
|
|
* \param depth current CU depth
|
|
* \param cur_cu CU to take the settings from
|
|
* \returns Void
|
|
*/
|
|
void inter_set_block(picture* pic, uint32_t x_cu, uint32_t y_cu, uint8_t depth, CU_info* cur_cu)
|
|
{
|
|
uint32_t x,y,d;
|
|
// Width in smallest CU
|
|
int width_in_scu = pic->width_in_lcu<<MAX_DEPTH;
|
|
int block_scu_width = (LCU_WIDTH>>depth)/(LCU_WIDTH>>MAX_DEPTH);
|
|
// Loop through all the block in the area of cur_cu
|
|
for (y = y_cu; y < y_cu + block_scu_width; y++) {
|
|
int cu_pos = y * width_in_scu; //!< calculate y-position once, use with every x
|
|
for (x = x_cu; x < x_cu + block_scu_width; x++) {
|
|
// reset all depths to the same MV/inter data
|
|
for(d = 0; d < MAX_DEPTH + 1; d++) {
|
|
pic->CU[d][cu_pos + x].depth = depth;
|
|
pic->CU[d][cu_pos + x].type = CU_INTER;
|
|
pic->CU[d][cu_pos + x].inter.mode = cur_cu->inter.mode;
|
|
pic->CU[d][cu_pos + x].inter.mv[0] = cur_cu->inter.mv[0];
|
|
pic->CU[d][cu_pos + x].inter.mv[1] = cur_cu->inter.mv[1];
|
|
pic->CU[d][cu_pos + x].inter.mv_dir = cur_cu->inter.mv_dir;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* \brief Reconstruct inter block
|
|
* \param ref picture to copy the data from
|
|
* \param xpos block x position
|
|
* \param ypos block y position
|
|
* \param width block width
|
|
* \param mv[2] motion vector
|
|
* \param dst destination picture
|
|
* \returns Void
|
|
*/
|
|
void inter_recon(picture* ref,int32_t xpos, int32_t ypos,int32_t width, int16_t mv[2], picture *dst)
|
|
{
|
|
int x,y,coord_x,coord_y;
|
|
|
|
int32_t dst_width_c = dst->width>>1; //!< Destination picture width in chroma pixels
|
|
int32_t ref_width_c = ref->width>>1; //!< Reference picture width in chroma pixels
|
|
|
|
// negative overflow flag
|
|
int8_t overflow_neg_x = (xpos + mv[0] < 0)?1:0;
|
|
int8_t overflow_neg_y = (ypos + mv[1] < 0)?1:0;
|
|
|
|
// positive overflow flag
|
|
int8_t overflow_pos_x = (xpos + mv[0] + width > ref->width )?1:0;
|
|
int8_t overflow_pos_y = (ypos + mv[1] + width > ref->height)?1:0;
|
|
|
|
// TODO: Fractional pixel support
|
|
mv[0] = mv[0]>>2;
|
|
mv[1] = mv[1]>>2;
|
|
|
|
// With overflow present, more checking
|
|
if (overflow_neg_x || overflow_neg_y || overflow_pos_x || overflow_pos_y) {
|
|
// Copy Luma with boundary checking
|
|
for (y = ypos; y < ypos + width; y++) {
|
|
for (x = xpos; x < xpos + width; x++) {
|
|
coord_x = x + mv[0];
|
|
coord_y = y + mv[1];
|
|
overflow_neg_x = (coord_x < 0)?1:0;
|
|
overflow_neg_y = (coord_y < 0)?1:0;
|
|
|
|
overflow_pos_x = (coord_x >= ref->width )?1:0;
|
|
overflow_pos_y = (coord_y >= ref->height)?1:0;
|
|
|
|
// On x-overflow set coord_x accordingly
|
|
if (overflow_neg_x) {
|
|
coord_x = 0;
|
|
} else if (overflow_pos_x) {
|
|
coord_x = ref->width - 1;
|
|
}
|
|
|
|
// On y-overflow set coord_y accordingly
|
|
if (overflow_neg_y) {
|
|
coord_y = 0;
|
|
} else if (overflow_pos_y) {
|
|
coord_y = ref->height - 1;
|
|
}
|
|
|
|
// set destination to (corrected) pixel value from the reference
|
|
dst->y_recdata[y * dst->width + x] = ref->y_recdata[coord_y*ref->width + coord_x];
|
|
}
|
|
}
|
|
|
|
// Copy Chroma with boundary checking
|
|
// TODO: chroma fractional pixel interpolation
|
|
for (y = ypos>>1; y < (ypos + width)>>1; y++) {
|
|
for (x = xpos>>1; x < (xpos + width)>>1; x++) {
|
|
coord_x = x + (mv[0]>>1);
|
|
coord_y = y + (mv[1]>>1);
|
|
overflow_neg_x = (coord_x < 0)?1:0;
|
|
overflow_neg_y = (y + (mv[1]>>1) < 0)?1:0;
|
|
|
|
overflow_pos_x = (coord_x >= ref->width>>1 )?1:0;
|
|
overflow_pos_y = (coord_y >= ref->height>>1)?1:0;
|
|
|
|
// On x-overflow set coord_x accordingly
|
|
if(overflow_neg_x) {
|
|
coord_x = 0;
|
|
} else if(overflow_pos_x) {
|
|
coord_x = (ref->width>>1) - 1;
|
|
}
|
|
|
|
// On y-overflow set coord_y accordingly
|
|
if(overflow_neg_y) {
|
|
coord_y = 0;
|
|
} else if(overflow_pos_y) {
|
|
coord_y = (ref->height>>1) - 1;
|
|
}
|
|
|
|
// set destinations to (corrected) pixel value from the reference
|
|
dst->u_recdata[y*dst_width_c + x] = ref->u_recdata[coord_y*ref_width_c + coord_x];
|
|
dst->v_recdata[y*dst_width_c + x] = ref->v_recdata[coord_y*ref_width_c + coord_x];
|
|
}
|
|
}
|
|
} else { //If no overflow, we can copy without checking boundaries
|
|
// Copy Luma
|
|
for (y = ypos; y < ypos + width; y++) {
|
|
coord_y = (y + mv[1]) * ref->width; // pre-calculate
|
|
for (x = xpos; x < xpos + width; x++) {
|
|
dst->y_recdata[y * dst->width + x] = ref->y_recdata[coord_y + x + mv[0]];
|
|
}
|
|
}
|
|
|
|
// Copy Chroma
|
|
// TODO: chroma fractional pixel interpolation
|
|
for (y = ypos>>1; y < (ypos + width)>>1; y++) {
|
|
coord_y = (y + (mv[1]>>1)) * ref_width_c; // pre-calculate
|
|
for (x = xpos>>1; x < (xpos + width)>>1; x++) {
|
|
dst->u_recdata[y*dst_width_c + x] = ref->u_recdata[coord_y + x + (mv[0]>>1)];
|
|
dst->v_recdata[y*dst_width_c + x] = ref->v_recdata[coord_y + x + (mv[0]>>1)];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* \brief Get MV prediction for current block
|
|
* \param encoder encoder control struct to use
|
|
* \param x_cu block x position in SCU
|
|
* \param y_cu block y position in SCU
|
|
* \param depth current block depth
|
|
* \param mv_pred[2][2] 2x motion vector prediction
|
|
*/
|
|
void inter_get_mv_cand(encoder_control *encoder, int32_t x_cu, int32_t y_cu, int8_t depth, int16_t mv_cand[2][2])
|
|
{
|
|
uint8_t cur_block_in_scu = (LCU_WIDTH>>depth) / CU_MIN_SIZE_PIXELS; //!< the width of the current block on SCU
|
|
uint8_t candidates = 0;
|
|
|
|
/*
|
|
Predictor block locations
|
|
____ _______
|
|
|B2|______|B1|B0|
|
|
| |
|
|
| Cur CU |
|
|
__| |
|
|
|A1|_________|
|
|
|A0|
|
|
*/
|
|
CU_info *b0, *b1, *b2, *a0, *a1;
|
|
|
|
b0 = b1 = b2 = a0 = a1 = NULL;
|
|
|
|
// A0 and A1 availability testing
|
|
if (x_cu != 0) {
|
|
a1 = &encoder->in.cur_pic->CU[depth][x_cu - 1 + (y_cu + cur_block_in_scu - 1) * (encoder->in.width_in_lcu<<MAX_DEPTH)];
|
|
if (!a1->coded) a1 = NULL;
|
|
|
|
if (y_cu + cur_block_in_scu < encoder->in.height_in_lcu<<MAX_DEPTH) {
|
|
a0 = &encoder->in.cur_pic->CU[depth][x_cu - 1 + (y_cu + cur_block_in_scu) * (encoder->in.width_in_lcu<<MAX_DEPTH)];
|
|
if (!a0->coded) a0 = NULL;
|
|
}
|
|
}
|
|
|
|
// B0, B1 and B2 availability testing
|
|
if (y_cu != 0) {
|
|
b0 = &encoder->in.cur_pic->CU[depth][x_cu + cur_block_in_scu + (y_cu - 1) * (encoder->in.width_in_lcu<<MAX_DEPTH)];
|
|
if (!b0->coded) b0 = NULL;
|
|
b1 = &encoder->in.cur_pic->CU[depth][x_cu + cur_block_in_scu - 1 + (y_cu - 1) * (encoder->in.width_in_lcu<<MAX_DEPTH)];
|
|
if (!b1->coded) b1 = NULL;
|
|
|
|
if (x_cu != 0) {
|
|
b2 = &encoder->in.cur_pic->CU[depth][x_cu - 1 + (y_cu - 1) * (encoder->in.width_in_lcu<<MAX_DEPTH)];
|
|
if(!b2->coded) b2 = NULL;
|
|
}
|
|
}
|
|
|
|
// Left predictors
|
|
if (a0 && a0->type == CU_INTER) {
|
|
mv_cand[candidates][0] = a0->inter.mv[0];
|
|
mv_cand[candidates][1] = a0->inter.mv[1];
|
|
candidates++;
|
|
} else if (a1 && a1->type == CU_INTER) {
|
|
mv_cand[candidates][0] = a1->inter.mv[0];
|
|
mv_cand[candidates][1] = a1->inter.mv[1];
|
|
candidates++;
|
|
}
|
|
|
|
// Top predictors
|
|
if (b0 && b0->type == CU_INTER) {
|
|
mv_cand[candidates][0] = b0->inter.mv[0];
|
|
mv_cand[candidates][1] = b0->inter.mv[1];
|
|
candidates++;
|
|
} else if (b1 && b1->type == CU_INTER) {
|
|
mv_cand[candidates][0] = b1->inter.mv[0];
|
|
mv_cand[candidates][1] = b1->inter.mv[1];
|
|
candidates++;
|
|
} else if(b2 && b2->type == CU_INTER) {
|
|
mv_cand[candidates][0] = b2->inter.mv[0];
|
|
mv_cand[candidates][1] = b2->inter.mv[1];
|
|
candidates++;
|
|
}
|
|
|
|
// Remove identical candidate
|
|
if(candidates == 2 && mv_cand[0][0] == mv_cand[1][0] && mv_cand[0][1] == mv_cand[1][1]) {
|
|
candidates = 1;
|
|
}
|
|
|
|
#if ENABLE_TEMPORAL_MVP
|
|
if(candidates < 2) {
|
|
//TODO: add temporal mv predictor
|
|
}
|
|
#endif
|
|
|
|
// Fill with (0,0)
|
|
while (candidates < 2) {
|
|
mv_cand[candidates][0] = 0;
|
|
mv_cand[candidates][1] = 0;
|
|
candidates++;
|
|
}
|
|
}
|