uvg266/src/strategies/avx2/picture-avx2.c

1281 lines
52 KiB
C

/*****************************************************************************
* This file is part of Kvazaar HEVC encoder.
*
* Copyright (C) 2013-2015 Tampere University of Technology and others (see
* COPYING file).
*
* Kvazaar is free software: you can redistribute it and/or modify it under
* the terms of the GNU Lesser General Public License as published by the
* Free Software Foundation; either version 2.1 of the License, or (at your
* option) any later version.
*
* Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with Kvazaar. If not, see <http://www.gnu.org/licenses/>.
****************************************************************************/
/*
* \file
*/
#include "global.h"
#if COMPILE_INTEL_AVX2
#include "kvazaar.h"
#if KVZ_BIT_DEPTH == 8
#include "strategies/avx2/picture-avx2.h"
#include "strategies/avx2/reg_sad_pow2_widths-avx2.h"
#include <immintrin.h>
#include <emmintrin.h>
#include <mmintrin.h>
#include <xmmintrin.h>
#include <string.h>
#include "strategies/strategies-picture.h"
#include "strategyselector.h"
#include "strategies/generic/picture-generic.h"
/**
* \brief Calculate Sum of Absolute Differences (SAD)
*
* Calculate Sum of Absolute Differences (SAD) between two rectangular regions
* located in arbitrary points in the picture.
*
* \param data1 Starting point of the first picture.
* \param data2 Starting point of the second picture.
* \param width Width of the region for which SAD is calculated.
* \param height Height of the region for which SAD is calculated.
* \param stride Width of the pixel array.
*
* \returns Sum of Absolute Differences
*/
uint32_t kvz_reg_sad_avx2(const uint8_t * const data1, const uint8_t * const data2,
const int width, const int height, const unsigned stride1, const unsigned stride2)
{
if (width == 0)
return 0;
if (width == 4)
return reg_sad_w4(data1, data2, height, stride1, stride2);
if (width == 8)
return reg_sad_w8(data1, data2, height, stride1, stride2);
if (width == 12)
return reg_sad_w12(data1, data2, height, stride1, stride2);
if (width == 16)
return reg_sad_w16(data1, data2, height, stride1, stride2);
if (width == 24)
return reg_sad_w24(data1, data2, height, stride1, stride2);
if (width == 32)
return reg_sad_w32(data1, data2, height, stride1, stride2);
if (width == 64)
return reg_sad_w64(data1, data2, height, stride1, stride2);
else
return reg_sad_arbitrary(data1, data2, width, height, stride1, stride2);
}
/**
* \brief Calculate SAD for 8x8 bytes in continuous memory.
*/
static INLINE __m256i inline_8bit_sad_8x8_avx2(const __m256i *const a, const __m256i *const b)
{
__m256i sum0, sum1;
sum0 = _mm256_sad_epu8(_mm256_load_si256(a + 0), _mm256_load_si256(b + 0));
sum1 = _mm256_sad_epu8(_mm256_load_si256(a + 1), _mm256_load_si256(b + 1));
return _mm256_add_epi32(sum0, sum1);
}
/**
* \brief Calculate SAD for 16x16 bytes in continuous memory.
*/
static INLINE __m256i inline_8bit_sad_16x16_avx2(const __m256i *const a, const __m256i *const b)
{
const unsigned size_of_8x8 = 8 * 8 / sizeof(__m256i);
// Calculate in 4 chunks of 16x4.
__m256i sum0, sum1, sum2, sum3;
sum0 = inline_8bit_sad_8x8_avx2(a + 0 * size_of_8x8, b + 0 * size_of_8x8);
sum1 = inline_8bit_sad_8x8_avx2(a + 1 * size_of_8x8, b + 1 * size_of_8x8);
sum2 = inline_8bit_sad_8x8_avx2(a + 2 * size_of_8x8, b + 2 * size_of_8x8);
sum3 = inline_8bit_sad_8x8_avx2(a + 3 * size_of_8x8, b + 3 * size_of_8x8);
sum0 = _mm256_add_epi32(sum0, sum1);
sum2 = _mm256_add_epi32(sum2, sum3);
return _mm256_add_epi32(sum0, sum2);
}
/**
* \brief Get sum of the low 32 bits of four 64 bit numbers from __m256i as uint32_t.
*/
static INLINE uint32_t m256i_horizontal_sum(const __m256i sum)
{
// Add the high 128 bits to low 128 bits.
__m128i mm128_result = _mm_add_epi32(_mm256_castsi256_si128(sum), _mm256_extractf128_si256(sum, 1));
// Add the high 64 bits to low 64 bits.
uint32_t result[4];
_mm_storeu_si128((__m128i*)result, mm128_result);
return result[0] + result[2];
}
static unsigned sad_8bit_8x8_avx2(const uint8_t *buf1, const uint8_t *buf2)
{
const __m256i *const a = (const __m256i *)buf1;
const __m256i *const b = (const __m256i *)buf2;
__m256i sum = inline_8bit_sad_8x8_avx2(a, b);
return m256i_horizontal_sum(sum);
}
static unsigned sad_8bit_16x16_avx2(const uint8_t *buf1, const uint8_t *buf2)
{
const __m256i *const a = (const __m256i *)buf1;
const __m256i *const b = (const __m256i *)buf2;
__m256i sum = inline_8bit_sad_16x16_avx2(a, b);
return m256i_horizontal_sum(sum);
}
static unsigned sad_8bit_32x32_avx2(const uint8_t *buf1, const uint8_t *buf2)
{
const __m256i *const a = (const __m256i *)buf1;
const __m256i *const b = (const __m256i *)buf2;
const unsigned size_of_8x8 = 8 * 8 / sizeof(__m256i);
const unsigned size_of_32x32 = 32 * 32 / sizeof(__m256i);
// Looping 512 bytes at a time seems faster than letting VC figure it out
// through inlining, like inline_8bit_sad_16x16_avx2 does.
__m256i sum0 = inline_8bit_sad_8x8_avx2(a, b);
for (unsigned i = size_of_8x8; i < size_of_32x32; i += size_of_8x8) {
__m256i sum1 = inline_8bit_sad_8x8_avx2(a + i, b + i);
sum0 = _mm256_add_epi32(sum0, sum1);
}
return m256i_horizontal_sum(sum0);
}
static unsigned sad_8bit_64x64_avx2(const uint8_t * buf1, const uint8_t * buf2)
{
const __m256i *const a = (const __m256i *)buf1;
const __m256i *const b = (const __m256i *)buf2;
const unsigned size_of_8x8 = 8 * 8 / sizeof(__m256i);
const unsigned size_of_64x64 = 64 * 64 / sizeof(__m256i);
// Looping 512 bytes at a time seems faster than letting VC figure it out
// through inlining, like inline_8bit_sad_16x16_avx2 does.
__m256i sum0 = inline_8bit_sad_8x8_avx2(a, b);
for (unsigned i = size_of_8x8; i < size_of_64x64; i += size_of_8x8) {
__m256i sum1 = inline_8bit_sad_8x8_avx2(a + i, b + i);
sum0 = _mm256_add_epi32(sum0, sum1);
}
return m256i_horizontal_sum(sum0);
}
static unsigned satd_4x4_8bit_avx2(const uint8_t *org, const uint8_t *cur)
{
__m128i original = _mm_cvtepu8_epi16(_mm_loadl_epi64((__m128i*)org));
__m128i current = _mm_cvtepu8_epi16(_mm_loadl_epi64((__m128i*)cur));
__m128i diff_lo = _mm_sub_epi16(current, original);
original = _mm_cvtepu8_epi16(_mm_loadl_epi64((__m128i*)(org + 8)));
current = _mm_cvtepu8_epi16(_mm_loadl_epi64((__m128i*)(cur + 8)));
__m128i diff_hi = _mm_sub_epi16(current, original);
//Hor
__m128i row0 = _mm_hadd_epi16(diff_lo, diff_hi);
__m128i row1 = _mm_hsub_epi16(diff_lo, diff_hi);
__m128i row2 = _mm_hadd_epi16(row0, row1);
__m128i row3 = _mm_hsub_epi16(row0, row1);
//Ver
row0 = _mm_hadd_epi16(row2, row3);
row1 = _mm_hsub_epi16(row2, row3);
row2 = _mm_hadd_epi16(row0, row1);
row3 = _mm_hsub_epi16(row0, row1);
//Abs and sum
row2 = _mm_abs_epi16(row2);
row3 = _mm_abs_epi16(row3);
row3 = _mm_add_epi16(row2, row3);
row3 = _mm_add_epi16(row3, _mm_shuffle_epi32(row3, _MM_SHUFFLE(1, 0, 3, 2) ));
row3 = _mm_add_epi16(row3, _mm_shuffle_epi32(row3, _MM_SHUFFLE(0, 1, 0, 1) ));
row3 = _mm_add_epi16(row3, _mm_shufflelo_epi16(row3, _MM_SHUFFLE(0, 1, 0, 1) ));
unsigned sum = _mm_extract_epi16(row3, 0);
unsigned satd = (sum + 1) >> 1;
return satd;
}
static void satd_8bit_4x4_dual_avx2(
const pred_buffer preds, const uint8_t * const orig, unsigned num_modes, unsigned *satds_out)
{
__m256i original = _mm256_broadcastsi128_si256(_mm_cvtepu8_epi16(_mm_loadl_epi64((__m128i*)orig)));
__m256i pred = _mm256_cvtepu8_epi16(_mm_loadl_epi64((__m128i*)preds[0]));
pred = _mm256_inserti128_si256(pred, _mm_cvtepu8_epi16(_mm_loadl_epi64((__m128i*)preds[1])), 1);
__m256i diff_lo = _mm256_sub_epi16(pred, original);
original = _mm256_broadcastsi128_si256(_mm_cvtepu8_epi16(_mm_loadl_epi64((__m128i*)(orig + 8))));
pred = _mm256_cvtepu8_epi16(_mm_loadl_epi64((__m128i*)(preds[0] + 8)));
pred = _mm256_inserti128_si256(pred, _mm_cvtepu8_epi16(_mm_loadl_epi64((__m128i*)(preds[1] + 8))), 1);
__m256i diff_hi = _mm256_sub_epi16(pred, original);
//Hor
__m256i row0 = _mm256_hadd_epi16(diff_lo, diff_hi);
__m256i row1 = _mm256_hsub_epi16(diff_lo, diff_hi);
__m256i row2 = _mm256_hadd_epi16(row0, row1);
__m256i row3 = _mm256_hsub_epi16(row0, row1);
//Ver
row0 = _mm256_hadd_epi16(row2, row3);
row1 = _mm256_hsub_epi16(row2, row3);
row2 = _mm256_hadd_epi16(row0, row1);
row3 = _mm256_hsub_epi16(row0, row1);
//Abs and sum
row2 = _mm256_abs_epi16(row2);
row3 = _mm256_abs_epi16(row3);
row3 = _mm256_add_epi16(row2, row3);
row3 = _mm256_add_epi16(row3, _mm256_shuffle_epi32(row3, _MM_SHUFFLE(1, 0, 3, 2) ));
row3 = _mm256_add_epi16(row3, _mm256_shuffle_epi32(row3, _MM_SHUFFLE(0, 1, 0, 1) ));
row3 = _mm256_add_epi16(row3, _mm256_shufflelo_epi16(row3, _MM_SHUFFLE(0, 1, 0, 1) ));
unsigned sum1 = _mm_extract_epi16(_mm256_castsi256_si128(row3), 0);
sum1 = (sum1 + 1) >> 1;
unsigned sum2 = _mm_extract_epi16(_mm256_extracti128_si256(row3, 1), 0);
sum2 = (sum2 + 1) >> 1;
satds_out[0] = sum1;
satds_out[1] = sum2;
}
static INLINE void hor_transform_row_avx2(__m128i* row){
__m128i mask_pos = _mm_set1_epi16(1);
__m128i mask_neg = _mm_set1_epi16(-1);
__m128i sign_mask = _mm_unpacklo_epi64(mask_pos, mask_neg);
__m128i temp = _mm_shuffle_epi32(*row, _MM_SHUFFLE(1, 0, 3, 2));
*row = _mm_sign_epi16(*row, sign_mask);
*row = _mm_add_epi16(*row, temp);
sign_mask = _mm_unpacklo_epi32(mask_pos, mask_neg);
temp = _mm_shuffle_epi32(*row, _MM_SHUFFLE(2, 3, 0, 1));
*row = _mm_sign_epi16(*row, sign_mask);
*row = _mm_add_epi16(*row, temp);
sign_mask = _mm_unpacklo_epi16(mask_pos, mask_neg);
temp = _mm_shufflelo_epi16(*row, _MM_SHUFFLE(2,3,0,1));
temp = _mm_shufflehi_epi16(temp, _MM_SHUFFLE(2,3,0,1));
*row = _mm_sign_epi16(*row, sign_mask);
*row = _mm_add_epi16(*row, temp);
}
static INLINE void hor_transform_row_dual_avx2(__m256i* row){
__m256i mask_pos = _mm256_set1_epi16(1);
__m256i mask_neg = _mm256_set1_epi16(-1);
__m256i sign_mask = _mm256_unpacklo_epi64(mask_pos, mask_neg);
__m256i temp = _mm256_shuffle_epi32(*row, _MM_SHUFFLE(1, 0, 3, 2));
*row = _mm256_sign_epi16(*row, sign_mask);
*row = _mm256_add_epi16(*row, temp);
sign_mask = _mm256_unpacklo_epi32(mask_pos, mask_neg);
temp = _mm256_shuffle_epi32(*row, _MM_SHUFFLE(2, 3, 0, 1));
*row = _mm256_sign_epi16(*row, sign_mask);
*row = _mm256_add_epi16(*row, temp);
sign_mask = _mm256_unpacklo_epi16(mask_pos, mask_neg);
temp = _mm256_shufflelo_epi16(*row, _MM_SHUFFLE(2,3,0,1));
temp = _mm256_shufflehi_epi16(temp, _MM_SHUFFLE(2,3,0,1));
*row = _mm256_sign_epi16(*row, sign_mask);
*row = _mm256_add_epi16(*row, temp);
}
static INLINE void add_sub_avx2(__m128i *out, __m128i *in, unsigned out_idx0, unsigned out_idx1, unsigned in_idx0, unsigned in_idx1)
{
out[out_idx0] = _mm_add_epi16(in[in_idx0], in[in_idx1]);
out[out_idx1] = _mm_sub_epi16(in[in_idx0], in[in_idx1]);
}
static INLINE void ver_transform_block_avx2(__m128i (*rows)[8]){
__m128i temp0[8];
add_sub_avx2(temp0, (*rows), 0, 1, 0, 1);
add_sub_avx2(temp0, (*rows), 2, 3, 2, 3);
add_sub_avx2(temp0, (*rows), 4, 5, 4, 5);
add_sub_avx2(temp0, (*rows), 6, 7, 6, 7);
__m128i temp1[8];
add_sub_avx2(temp1, temp0, 0, 1, 0, 2);
add_sub_avx2(temp1, temp0, 2, 3, 1, 3);
add_sub_avx2(temp1, temp0, 4, 5, 4, 6);
add_sub_avx2(temp1, temp0, 6, 7, 5, 7);
add_sub_avx2((*rows), temp1, 0, 1, 0, 4);
add_sub_avx2((*rows), temp1, 2, 3, 1, 5);
add_sub_avx2((*rows), temp1, 4, 5, 2, 6);
add_sub_avx2((*rows), temp1, 6, 7, 3, 7);
}
static INLINE void add_sub_dual_avx2(__m256i *out, __m256i *in, unsigned out_idx0, unsigned out_idx1, unsigned in_idx0, unsigned in_idx1)
{
out[out_idx0] = _mm256_add_epi16(in[in_idx0], in[in_idx1]);
out[out_idx1] = _mm256_sub_epi16(in[in_idx0], in[in_idx1]);
}
static INLINE void ver_transform_block_dual_avx2(__m256i (*rows)[8]){
__m256i temp0[8];
add_sub_dual_avx2(temp0, (*rows), 0, 1, 0, 1);
add_sub_dual_avx2(temp0, (*rows), 2, 3, 2, 3);
add_sub_dual_avx2(temp0, (*rows), 4, 5, 4, 5);
add_sub_dual_avx2(temp0, (*rows), 6, 7, 6, 7);
__m256i temp1[8];
add_sub_dual_avx2(temp1, temp0, 0, 1, 0, 2);
add_sub_dual_avx2(temp1, temp0, 2, 3, 1, 3);
add_sub_dual_avx2(temp1, temp0, 4, 5, 4, 6);
add_sub_dual_avx2(temp1, temp0, 6, 7, 5, 7);
add_sub_dual_avx2((*rows), temp1, 0, 1, 0, 4);
add_sub_dual_avx2((*rows), temp1, 2, 3, 1, 5);
add_sub_dual_avx2((*rows), temp1, 4, 5, 2, 6);
add_sub_dual_avx2((*rows), temp1, 6, 7, 3, 7);
}
INLINE static void haddwd_accumulate_avx2(__m128i *accumulate, __m128i *ver_row)
{
__m128i abs_value = _mm_abs_epi16(*ver_row);
*accumulate = _mm_add_epi32(*accumulate, _mm_madd_epi16(abs_value, _mm_set1_epi16(1)));
}
INLINE static void haddwd_accumulate_dual_avx2(__m256i *accumulate, __m256i *ver_row)
{
__m256i abs_value = _mm256_abs_epi16(*ver_row);
*accumulate = _mm256_add_epi32(*accumulate, _mm256_madd_epi16(abs_value, _mm256_set1_epi16(1)));
}
INLINE static unsigned sum_block_avx2(__m128i *ver_row)
{
__m128i sad = _mm_setzero_si128();
haddwd_accumulate_avx2(&sad, ver_row + 0);
haddwd_accumulate_avx2(&sad, ver_row + 1);
haddwd_accumulate_avx2(&sad, ver_row + 2);
haddwd_accumulate_avx2(&sad, ver_row + 3);
haddwd_accumulate_avx2(&sad, ver_row + 4);
haddwd_accumulate_avx2(&sad, ver_row + 5);
haddwd_accumulate_avx2(&sad, ver_row + 6);
haddwd_accumulate_avx2(&sad, ver_row + 7);
sad = _mm_add_epi32(sad, _mm_shuffle_epi32(sad, _MM_SHUFFLE(1, 0, 3, 2)));
sad = _mm_add_epi32(sad, _mm_shuffle_epi32(sad, _MM_SHUFFLE(0, 1, 0, 1)));
return _mm_cvtsi128_si32(sad);
}
INLINE static void sum_block_dual_avx2(__m256i *ver_row, unsigned *sum0, unsigned *sum1)
{
__m256i sad = _mm256_setzero_si256();
haddwd_accumulate_dual_avx2(&sad, ver_row + 0);
haddwd_accumulate_dual_avx2(&sad, ver_row + 1);
haddwd_accumulate_dual_avx2(&sad, ver_row + 2);
haddwd_accumulate_dual_avx2(&sad, ver_row + 3);
haddwd_accumulate_dual_avx2(&sad, ver_row + 4);
haddwd_accumulate_dual_avx2(&sad, ver_row + 5);
haddwd_accumulate_dual_avx2(&sad, ver_row + 6);
haddwd_accumulate_dual_avx2(&sad, ver_row + 7);
sad = _mm256_add_epi32(sad, _mm256_shuffle_epi32(sad, _MM_SHUFFLE(1, 0, 3, 2)));
sad = _mm256_add_epi32(sad, _mm256_shuffle_epi32(sad, _MM_SHUFFLE(0, 1, 0, 1)));
*sum0 = _mm_cvtsi128_si32(_mm256_extracti128_si256(sad, 0));
*sum1 = _mm_cvtsi128_si32(_mm256_extracti128_si256(sad, 1));
}
INLINE static __m128i diff_row_avx2(const uint8_t *buf1, const uint8_t *buf2)
{
__m128i buf1_row = _mm_cvtepu8_epi16(_mm_loadl_epi64((__m128i*)buf1));
__m128i buf2_row = _mm_cvtepu8_epi16(_mm_loadl_epi64((__m128i*)buf2));
return _mm_sub_epi16(buf1_row, buf2_row);
}
INLINE static __m256i diff_row_dual_avx2(const uint8_t *buf1, const uint8_t *buf2, const uint8_t *orig)
{
__m128i temp1 = _mm_loadl_epi64((__m128i*)buf1);
__m128i temp2 = _mm_loadl_epi64((__m128i*)buf2);
__m128i temp3 = _mm_loadl_epi64((__m128i*)orig);
__m256i buf1_row = _mm256_cvtepu8_epi16(_mm_unpacklo_epi64(temp1, temp2));
__m256i buf2_row = _mm256_cvtepu8_epi16(_mm_broadcastq_epi64(temp3));
return _mm256_sub_epi16(buf1_row, buf2_row);
}
INLINE static void diff_blocks_avx2(__m128i (*row_diff)[8],
const uint8_t * buf1, unsigned stride1,
const uint8_t * orig, unsigned stride_orig)
{
(*row_diff)[0] = diff_row_avx2(buf1 + 0 * stride1, orig + 0 * stride_orig);
(*row_diff)[1] = diff_row_avx2(buf1 + 1 * stride1, orig + 1 * stride_orig);
(*row_diff)[2] = diff_row_avx2(buf1 + 2 * stride1, orig + 2 * stride_orig);
(*row_diff)[3] = diff_row_avx2(buf1 + 3 * stride1, orig + 3 * stride_orig);
(*row_diff)[4] = diff_row_avx2(buf1 + 4 * stride1, orig + 4 * stride_orig);
(*row_diff)[5] = diff_row_avx2(buf1 + 5 * stride1, orig + 5 * stride_orig);
(*row_diff)[6] = diff_row_avx2(buf1 + 6 * stride1, orig + 6 * stride_orig);
(*row_diff)[7] = diff_row_avx2(buf1 + 7 * stride1, orig + 7 * stride_orig);
}
INLINE static void diff_blocks_dual_avx2(__m256i (*row_diff)[8],
const uint8_t * buf1, unsigned stride1,
const uint8_t * buf2, unsigned stride2,
const uint8_t * orig, unsigned stride_orig)
{
(*row_diff)[0] = diff_row_dual_avx2(buf1 + 0 * stride1, buf2 + 0 * stride2, orig + 0 * stride_orig);
(*row_diff)[1] = diff_row_dual_avx2(buf1 + 1 * stride1, buf2 + 1 * stride2, orig + 1 * stride_orig);
(*row_diff)[2] = diff_row_dual_avx2(buf1 + 2 * stride1, buf2 + 2 * stride2, orig + 2 * stride_orig);
(*row_diff)[3] = diff_row_dual_avx2(buf1 + 3 * stride1, buf2 + 3 * stride2, orig + 3 * stride_orig);
(*row_diff)[4] = diff_row_dual_avx2(buf1 + 4 * stride1, buf2 + 4 * stride2, orig + 4 * stride_orig);
(*row_diff)[5] = diff_row_dual_avx2(buf1 + 5 * stride1, buf2 + 5 * stride2, orig + 5 * stride_orig);
(*row_diff)[6] = diff_row_dual_avx2(buf1 + 6 * stride1, buf2 + 6 * stride2, orig + 6 * stride_orig);
(*row_diff)[7] = diff_row_dual_avx2(buf1 + 7 * stride1, buf2 + 7 * stride2, orig + 7 * stride_orig);
}
INLINE static void hor_transform_block_avx2(__m128i (*row_diff)[8])
{
hor_transform_row_avx2((*row_diff) + 0);
hor_transform_row_avx2((*row_diff) + 1);
hor_transform_row_avx2((*row_diff) + 2);
hor_transform_row_avx2((*row_diff) + 3);
hor_transform_row_avx2((*row_diff) + 4);
hor_transform_row_avx2((*row_diff) + 5);
hor_transform_row_avx2((*row_diff) + 6);
hor_transform_row_avx2((*row_diff) + 7);
}
INLINE static void hor_transform_block_dual_avx2(__m256i (*row_diff)[8])
{
hor_transform_row_dual_avx2((*row_diff) + 0);
hor_transform_row_dual_avx2((*row_diff) + 1);
hor_transform_row_dual_avx2((*row_diff) + 2);
hor_transform_row_dual_avx2((*row_diff) + 3);
hor_transform_row_dual_avx2((*row_diff) + 4);
hor_transform_row_dual_avx2((*row_diff) + 5);
hor_transform_row_dual_avx2((*row_diff) + 6);
hor_transform_row_dual_avx2((*row_diff) + 7);
}
static void kvz_satd_8bit_8x8_general_dual_avx2(const uint8_t * buf1, unsigned stride1,
const uint8_t * buf2, unsigned stride2,
const uint8_t * orig, unsigned stride_orig,
unsigned *sum0, unsigned *sum1)
{
__m256i temp[8];
diff_blocks_dual_avx2(&temp, buf1, stride1, buf2, stride2, orig, stride_orig);
hor_transform_block_dual_avx2(&temp);
ver_transform_block_dual_avx2(&temp);
sum_block_dual_avx2(temp, sum0, sum1);
*sum0 = (*sum0 + 2) >> 2;
*sum1 = (*sum1 + 2) >> 2;
}
/**
* \brief Calculate SATD between two 4x4 blocks inside bigger arrays.
*/
static unsigned kvz_satd_4x4_subblock_8bit_avx2(const uint8_t * buf1,
const int32_t stride1,
const uint8_t * buf2,
const int32_t stride2)
{
// TODO: AVX2 implementation
return kvz_satd_4x4_subblock_generic(buf1, stride1, buf2, stride2);
}
static void kvz_satd_4x4_subblock_quad_avx2(const uint8_t *preds[4],
const int stride,
const uint8_t *orig,
const int orig_stride,
unsigned costs[4])
{
// TODO: AVX2 implementation
kvz_satd_4x4_subblock_quad_generic(preds, stride, orig, orig_stride, costs);
}
static unsigned satd_8x8_subblock_8bit_avx2(const uint8_t * buf1, unsigned stride1, const uint8_t * buf2, unsigned stride2)
{
__m128i temp[8];
diff_blocks_avx2(&temp, buf1, stride1, buf2, stride2);
hor_transform_block_avx2(&temp);
ver_transform_block_avx2(&temp);
unsigned sad = sum_block_avx2(temp);
unsigned result = (sad + 2) >> 2;
return result;
}
static void satd_8x8_subblock_quad_avx2(const uint8_t **preds,
const int stride,
const uint8_t *orig,
const int orig_stride,
unsigned *costs)
{
kvz_satd_8bit_8x8_general_dual_avx2(preds[0], stride, preds[1], stride, orig, orig_stride, &costs[0], &costs[1]);
kvz_satd_8bit_8x8_general_dual_avx2(preds[2], stride, preds[3], stride, orig, orig_stride, &costs[2], &costs[3]);
}
SATD_NxN(8bit_avx2, 8)
SATD_NxN(8bit_avx2, 16)
SATD_NxN(8bit_avx2, 32)
SATD_NxN(8bit_avx2, 64)
SATD_ANY_SIZE(8bit_avx2)
// Function macro for defining hadamard calculating functions
// for fixed size blocks. They calculate hadamard for integer
// multiples of 8x8 with the 8x8 hadamard function.
#define SATD_NXN_DUAL_AVX2(n) \
static void satd_8bit_ ## n ## x ## n ## _dual_avx2( \
const pred_buffer preds, const uint8_t * const orig, unsigned num_modes, unsigned *satds_out) \
{ \
unsigned x, y; \
satds_out[0] = 0; \
satds_out[1] = 0; \
unsigned sum1 = 0; \
unsigned sum2 = 0; \
for (y = 0; y < (n); y += 8) { \
unsigned row = y * (n); \
for (x = 0; x < (n); x += 8) { \
kvz_satd_8bit_8x8_general_dual_avx2(&preds[0][row + x], (n), &preds[1][row + x], (n), &orig[row + x], (n), &sum1, &sum2); \
satds_out[0] += sum1; \
satds_out[1] += sum2; \
} \
} \
satds_out[0] >>= (KVZ_BIT_DEPTH-8); \
satds_out[1] >>= (KVZ_BIT_DEPTH-8); \
}
static void satd_8bit_8x8_dual_avx2(
const pred_buffer preds, const uint8_t * const orig, unsigned num_modes, unsigned *satds_out)
{
unsigned x, y;
satds_out[0] = 0;
satds_out[1] = 0;
unsigned sum1 = 0;
unsigned sum2 = 0;
for (y = 0; y < (8); y += 8) {
unsigned row = y * (8);
for (x = 0; x < (8); x += 8) {
kvz_satd_8bit_8x8_general_dual_avx2(&preds[0][row + x], (8), &preds[1][row + x], (8), &orig[row + x], (8), &sum1, &sum2);
satds_out[0] += sum1;
satds_out[1] += sum2;
}
}
satds_out[0] >>= (KVZ_BIT_DEPTH-8);
satds_out[1] >>= (KVZ_BIT_DEPTH-8);
}
//SATD_NXN_DUAL_AVX2(8) //Use the non-macro version
SATD_NXN_DUAL_AVX2(16)
SATD_NXN_DUAL_AVX2(32)
SATD_NXN_DUAL_AVX2(64)
#define SATD_ANY_SIZE_MULTI_AVX2(suffix, num_parallel_blocks) \
static cost_pixel_any_size_multi_func satd_any_size_## suffix; \
static void satd_any_size_ ## suffix ( \
int width, int height, \
const uint8_t **preds, \
const int stride, \
const uint8_t *orig, \
const int orig_stride, \
unsigned num_modes, \
unsigned *costs_out, \
int8_t *valid) \
{ \
unsigned sums[num_parallel_blocks] = { 0 }; \
const uint8_t *pred_ptrs[4] = { preds[0], preds[1], preds[2], preds[3] };\
const uint8_t *orig_ptr = orig; \
costs_out[0] = 0; costs_out[1] = 0; costs_out[2] = 0; costs_out[3] = 0; \
if (width % 8 != 0) { \
/* Process the first column using 4x4 blocks. */ \
for (int y = 0; y < height; y += 4) { \
kvz_satd_4x4_subblock_ ## suffix(preds, stride, orig, orig_stride, sums); \
} \
orig_ptr += 4; \
for(int blk = 0; blk < num_parallel_blocks; ++blk){\
pred_ptrs[blk] += 4; \
}\
width -= 4; \
} \
if (height % 8 != 0) { \
/* Process the first row using 4x4 blocks. */ \
for (int x = 0; x < width; x += 4 ) { \
kvz_satd_4x4_subblock_ ## suffix(pred_ptrs, stride, orig_ptr, orig_stride, sums); \
} \
orig_ptr += 4 * orig_stride; \
for(int blk = 0; blk < num_parallel_blocks; ++blk){\
pred_ptrs[blk] += 4 * stride; \
}\
height -= 4; \
} \
/* The rest can now be processed with 8x8 blocks. */ \
for (int y = 0; y < height; y += 8) { \
orig_ptr = &orig[y * orig_stride]; \
pred_ptrs[0] = &preds[0][y * stride]; \
pred_ptrs[1] = &preds[1][y * stride]; \
pred_ptrs[2] = &preds[2][y * stride]; \
pred_ptrs[3] = &preds[3][y * stride]; \
for (int x = 0; x < width; x += 8) { \
satd_8x8_subblock_ ## suffix(pred_ptrs, stride, orig_ptr, orig_stride, sums); \
orig_ptr += 8; \
pred_ptrs[0] += 8; \
pred_ptrs[1] += 8; \
pred_ptrs[2] += 8; \
pred_ptrs[3] += 8; \
costs_out[0] += sums[0]; \
costs_out[1] += sums[1]; \
costs_out[2] += sums[2]; \
costs_out[3] += sums[3]; \
} \
} \
for(int i = 0; i < num_parallel_blocks; ++i){\
costs_out[i] = costs_out[i] >> (KVZ_BIT_DEPTH - 8);\
} \
return; \
}
SATD_ANY_SIZE_MULTI_AVX2(quad_avx2, 4)
static unsigned pixels_calc_ssd_avx2(const uint8_t *const ref, const uint8_t *const rec,
const int ref_stride, const int rec_stride,
const int width)
{
__m256i ssd_part;
__m256i diff = _mm256_setzero_si256();
__m128i sum;
__m256i ref_epi16;
__m256i rec_epi16;
__m128i ref_row0, ref_row1, ref_row2, ref_row3;
__m128i rec_row0, rec_row1, rec_row2, rec_row3;
int ssd;
switch (width) {
case 4:
ref_row0 = _mm_cvtsi32_si128(*(int32_t*)&(ref[0 * ref_stride]));
ref_row1 = _mm_cvtsi32_si128(*(int32_t*)&(ref[1 * ref_stride]));
ref_row2 = _mm_cvtsi32_si128(*(int32_t*)&(ref[2 * ref_stride]));
ref_row3 = _mm_cvtsi32_si128(*(int32_t*)&(ref[3 * ref_stride]));
ref_row0 = _mm_unpacklo_epi32(ref_row0, ref_row1);
ref_row1 = _mm_unpacklo_epi32(ref_row2, ref_row3);
ref_epi16 = _mm256_cvtepu8_epi16(_mm_unpacklo_epi64(ref_row0, ref_row1) );
rec_row0 = _mm_cvtsi32_si128(*(int32_t*)&(rec[0 * rec_stride]));
rec_row1 = _mm_cvtsi32_si128(*(int32_t*)&(rec[1 * rec_stride]));
rec_row2 = _mm_cvtsi32_si128(*(int32_t*)&(rec[2 * rec_stride]));
rec_row3 = _mm_cvtsi32_si128(*(int32_t*)&(rec[3 * rec_stride]));
rec_row0 = _mm_unpacklo_epi32(rec_row0, rec_row1);
rec_row1 = _mm_unpacklo_epi32(rec_row2, rec_row3);
rec_epi16 = _mm256_cvtepu8_epi16(_mm_unpacklo_epi64(rec_row0, rec_row1) );
diff = _mm256_sub_epi16(ref_epi16, rec_epi16);
ssd_part = _mm256_madd_epi16(diff, diff);
sum = _mm_add_epi32(_mm256_castsi256_si128(ssd_part), _mm256_extracti128_si256(ssd_part, 1));
sum = _mm_add_epi32(sum, _mm_shuffle_epi32(sum, _MM_SHUFFLE(1, 0, 3, 2)));
sum = _mm_add_epi32(sum, _mm_shuffle_epi32(sum, _MM_SHUFFLE(0, 1, 0, 1)));
ssd = _mm_cvtsi128_si32(sum);
return ssd >> (2*(KVZ_BIT_DEPTH-8));
break;
default:
ssd_part = _mm256_setzero_si256();
for (int y = 0; y < width; y += 8) {
for (int x = 0; x < width; x += 8) {
for (int i = 0; i < 8; i += 2) {
ref_epi16 = _mm256_cvtepu8_epi16(_mm_unpacklo_epi64(_mm_loadl_epi64((__m128i*)&(ref[x + (y + i) * ref_stride])), _mm_loadl_epi64((__m128i*)&(ref[x + (y + i + 1) * ref_stride]))));
rec_epi16 = _mm256_cvtepu8_epi16(_mm_unpacklo_epi64(_mm_loadl_epi64((__m128i*)&(rec[x + (y + i) * rec_stride])), _mm_loadl_epi64((__m128i*)&(rec[x + (y + i + 1) * rec_stride]))));
diff = _mm256_sub_epi16(ref_epi16, rec_epi16);
ssd_part = _mm256_add_epi32(ssd_part, _mm256_madd_epi16(diff, diff));
}
}
}
sum = _mm_add_epi32(_mm256_castsi256_si128(ssd_part), _mm256_extracti128_si256(ssd_part, 1));
sum = _mm_add_epi32(sum, _mm_shuffle_epi32(sum, _MM_SHUFFLE(1, 0, 3, 2)));
sum = _mm_add_epi32(sum, _mm_shuffle_epi32(sum, _MM_SHUFFLE(0, 1, 0, 1)));
ssd = _mm_cvtsi128_si32(sum);
return ssd >> (2*(KVZ_BIT_DEPTH-8));
break;
}
}
static void inter_recon_bipred_avx2(const int hi_prec_luma_rec0,
const int hi_prec_luma_rec1,
const int hi_prec_chroma_rec0,
const int hi_prec_chroma_rec1,
const int height,
const int width,
const int ypos,
const int xpos,
const hi_prec_buf_t*high_precision_rec0,
const hi_prec_buf_t*high_precision_rec1,
lcu_t* lcu,
uint8_t* temp_lcu_y,
uint8_t* temp_lcu_u,
uint8_t* temp_lcu_v,
bool predict_luma,
bool predict_chroma)
{
int y_in_lcu, x_in_lcu;
int shift = 15 - KVZ_BIT_DEPTH;
int offset = 1 << (shift - 1);
__m256i temp_epi8, temp_y_epi32, sample0_epi32, sample1_epi32, temp_epi16;
int32_t * pointer = 0;
__m256i offset_epi32 = _mm256_set1_epi32(offset);
for (int temp_y = 0; temp_y < height; ++temp_y) {
y_in_lcu = ((ypos + temp_y) & ((LCU_WIDTH)-1));
for (int temp_x = 0; temp_x < width; temp_x += 8) {
x_in_lcu = ((xpos + temp_x) & ((LCU_WIDTH)-1));
if (predict_luma) {
bool use_8_elements = ((temp_x + 8) <= width);
if (!use_8_elements) {
if (width < 4) {
// If width is smaller than 4 there's no need to use SIMD
for (int temp_i = 0; temp_i < width; ++temp_i) {
x_in_lcu = ((xpos + temp_i) & ((LCU_WIDTH)-1));
int sample0_y = (hi_prec_luma_rec0 ? high_precision_rec0->y[y_in_lcu * LCU_WIDTH + x_in_lcu] : (temp_lcu_y[y_in_lcu * LCU_WIDTH + x_in_lcu] << (14 - KVZ_BIT_DEPTH)));
int sample1_y = (hi_prec_luma_rec1 ? high_precision_rec1->y[y_in_lcu * LCU_WIDTH + x_in_lcu] : (lcu->rec.y[y_in_lcu * LCU_WIDTH + x_in_lcu] << (14 - KVZ_BIT_DEPTH)));
lcu->rec.y[y_in_lcu * LCU_WIDTH + x_in_lcu] = (uint8_t)kvz_fast_clip_32bit_to_pixel((sample0_y + sample1_y + offset) >> shift);
}
}
else {
// Load total of 4 elements from memory to vector
sample0_epi32 = hi_prec_luma_rec0 ? _mm256_cvtepi16_epi32(_mm_loadl_epi64((__m128i*) &(high_precision_rec0->y[y_in_lcu * LCU_WIDTH + x_in_lcu]))) :
_mm256_slli_epi32(_mm256_cvtepu8_epi32(_mm_cvtsi32_si128(*(int32_t*)&(temp_lcu_y[y_in_lcu * LCU_WIDTH + x_in_lcu]))), 14 - KVZ_BIT_DEPTH);
sample1_epi32 = hi_prec_luma_rec1 ? _mm256_cvtepi16_epi32(_mm_loadl_epi64((__m128i*) &(high_precision_rec1->y[y_in_lcu * LCU_WIDTH + x_in_lcu]))) :
_mm256_slli_epi32(_mm256_cvtepu8_epi32(_mm_cvtsi32_si128(*(int32_t*) &(lcu->rec.y[y_in_lcu * LCU_WIDTH + x_in_lcu]))), 14 - KVZ_BIT_DEPTH);
// (sample1 + sample2 + offset)>>shift
temp_y_epi32 = _mm256_add_epi32(sample0_epi32, sample1_epi32);
temp_y_epi32 = _mm256_add_epi32(temp_y_epi32, offset_epi32);
temp_y_epi32 = _mm256_srai_epi32(temp_y_epi32, shift);
// Pack the bits from 32-bit to 8-bit
temp_epi16 = _mm256_packs_epi32(temp_y_epi32, temp_y_epi32);
temp_epi16 = _mm256_permute4x64_epi64(temp_epi16, _MM_SHUFFLE(3, 1, 2, 0));
temp_epi8 = _mm256_packus_epi16(temp_epi16, temp_epi16);
pointer = (int32_t*)&(lcu->rec.y[(y_in_lcu)* LCU_WIDTH + x_in_lcu]);
*pointer = _mm_cvtsi128_si32(_mm256_castsi256_si128(temp_epi8));
for (int temp_i = temp_x + 4; temp_i < width; ++temp_i) {
x_in_lcu = ((xpos + temp_i) & ((LCU_WIDTH)-1));
int16_t sample0_y = (hi_prec_luma_rec0 ? high_precision_rec0->y[y_in_lcu * LCU_WIDTH + x_in_lcu] : (temp_lcu_y[y_in_lcu * LCU_WIDTH + x_in_lcu] << (14 - KVZ_BIT_DEPTH)));
int16_t sample1_y = (hi_prec_luma_rec1 ? high_precision_rec1->y[y_in_lcu * LCU_WIDTH + x_in_lcu] : (lcu->rec.y[y_in_lcu * LCU_WIDTH + x_in_lcu] << (14 - KVZ_BIT_DEPTH)));
lcu->rec.y[y_in_lcu * LCU_WIDTH + x_in_lcu] = (uint8_t)kvz_fast_clip_32bit_to_pixel((sample0_y + sample1_y + offset) >> shift);
}
}
} else {
// Load total of 8 elements from memory to vector
sample0_epi32 = hi_prec_luma_rec0 ? _mm256_cvtepi16_epi32(_mm_loadu_si128((__m128i*) &(high_precision_rec0->y[y_in_lcu * LCU_WIDTH + x_in_lcu]))) :
_mm256_slli_epi32(_mm256_cvtepu8_epi32((_mm_loadl_epi64((__m128i*) &(temp_lcu_y[y_in_lcu * LCU_WIDTH + x_in_lcu])))), 14 - KVZ_BIT_DEPTH);
sample1_epi32 = hi_prec_luma_rec1 ? _mm256_cvtepi16_epi32(_mm_loadu_si128((__m128i*) &(high_precision_rec1->y[y_in_lcu * LCU_WIDTH + x_in_lcu]))) :
_mm256_slli_epi32(_mm256_cvtepu8_epi32((_mm_loadl_epi64((__m128i*) &(lcu->rec.y[y_in_lcu * LCU_WIDTH + x_in_lcu])))), 14 - KVZ_BIT_DEPTH);
// (sample1 + sample2 + offset)>>shift
temp_y_epi32 = _mm256_add_epi32(sample0_epi32, sample1_epi32);
temp_y_epi32 = _mm256_add_epi32(temp_y_epi32, offset_epi32);
temp_y_epi32 = _mm256_srai_epi32(temp_y_epi32, shift);
// Pack the bits from 32-bit to 8-bit
temp_epi16 = _mm256_packs_epi32(temp_y_epi32, temp_y_epi32);
temp_epi16 = _mm256_permute4x64_epi64(temp_epi16, _MM_SHUFFLE(3, 1, 2, 0));
temp_epi8 = _mm256_packus_epi16(temp_epi16, temp_epi16);
// Store 64-bits from vector to memory
_mm_storel_epi64((__m128i*)&(lcu->rec.y[(y_in_lcu)* LCU_WIDTH + x_in_lcu]), _mm256_castsi256_si128(temp_epi8));
}
}
}
}
for (int temp_y = 0; temp_y < height >> 1; ++temp_y) {
int y_in_lcu = (((ypos >> 1) + temp_y) & (LCU_WIDTH_C - 1));
for (int temp_x = 0; temp_x < width >> 1; temp_x += 8) {
int x_in_lcu = (((xpos >> 1) + temp_x) & (LCU_WIDTH_C - 1));
if (predict_chroma) {
if ((width >> 1) < 4) {
// If width>>1 is smaller than 4 there's no need to use SIMD
for (int temp_i = 0; temp_i < width >> 1; ++temp_i) {
int temp_x_in_lcu = (((xpos >> 1) + temp_i) & (LCU_WIDTH_C - 1));
int16_t sample0_u = (hi_prec_chroma_rec0 ? high_precision_rec0->u[y_in_lcu * LCU_WIDTH_C + temp_x_in_lcu] : (temp_lcu_u[y_in_lcu * LCU_WIDTH_C + temp_x_in_lcu] << (14 - KVZ_BIT_DEPTH)));
int16_t sample1_u = (hi_prec_chroma_rec1 ? high_precision_rec1->u[y_in_lcu * LCU_WIDTH_C + temp_x_in_lcu] : (lcu->rec.u[y_in_lcu * LCU_WIDTH_C + temp_x_in_lcu] << (14 - KVZ_BIT_DEPTH)));
lcu->rec.u[y_in_lcu * LCU_WIDTH_C + temp_x_in_lcu] = (uint8_t)kvz_fast_clip_32bit_to_pixel((sample0_u + sample1_u + offset) >> shift);
int16_t sample0_v = (hi_prec_chroma_rec0 ? high_precision_rec0->v[y_in_lcu * LCU_WIDTH_C + temp_x_in_lcu] : (temp_lcu_v[y_in_lcu * LCU_WIDTH_C + temp_x_in_lcu] << (14 - KVZ_BIT_DEPTH)));
int16_t sample1_v = (hi_prec_chroma_rec1 ? high_precision_rec1->v[y_in_lcu * LCU_WIDTH_C + temp_x_in_lcu] : (lcu->rec.v[y_in_lcu * LCU_WIDTH_C + temp_x_in_lcu] << (14 - KVZ_BIT_DEPTH)));
lcu->rec.v[y_in_lcu * LCU_WIDTH_C + temp_x_in_lcu] = (uint8_t)kvz_fast_clip_32bit_to_pixel((sample0_v + sample1_v + offset) >> shift);
}
}
else {
bool use_8_elements = ((temp_x + 8) <= (width >> 1));
__m256i temp_u_epi32, temp_v_epi32;
if (!use_8_elements) {
// Load 4 pixels to vector
sample0_epi32 = hi_prec_chroma_rec0 ? _mm256_cvtepi16_epi32(_mm_loadl_epi64((__m128i*) &(high_precision_rec0->u[y_in_lcu * LCU_WIDTH_C + x_in_lcu]))) :
_mm256_slli_epi32(_mm256_cvtepu8_epi32(_mm_cvtsi32_si128(*(int32_t*) &(temp_lcu_u[y_in_lcu * LCU_WIDTH_C + x_in_lcu]))), 14 - KVZ_BIT_DEPTH);
sample1_epi32 = hi_prec_chroma_rec1 ? _mm256_cvtepi16_epi32(_mm_loadl_epi64((__m128i*) &(high_precision_rec1->u[y_in_lcu * LCU_WIDTH_C + x_in_lcu]))) :
_mm256_slli_epi32(_mm256_cvtepu8_epi32(_mm_cvtsi32_si128(*(int32_t*) &(lcu->rec.u[y_in_lcu * LCU_WIDTH_C + x_in_lcu]))), 14 - KVZ_BIT_DEPTH);
// (sample1 + sample2 + offset)>>shift
temp_u_epi32 = _mm256_add_epi32(sample0_epi32, sample1_epi32);
temp_u_epi32 = _mm256_add_epi32(temp_u_epi32, offset_epi32);
temp_u_epi32 = _mm256_srai_epi32(temp_u_epi32, shift);
sample0_epi32 = hi_prec_chroma_rec0 ? _mm256_cvtepi16_epi32(_mm_loadl_epi64((__m128i*) &(high_precision_rec0->v[y_in_lcu * LCU_WIDTH_C + x_in_lcu]))) :
_mm256_slli_epi32(_mm256_cvtepu8_epi32(_mm_cvtsi32_si128(*(int32_t*) &(temp_lcu_v[y_in_lcu * LCU_WIDTH_C + x_in_lcu]))), 14 - KVZ_BIT_DEPTH);
sample1_epi32 = hi_prec_chroma_rec1 ? _mm256_cvtepi16_epi32(_mm_loadl_epi64((__m128i*) &(high_precision_rec1->v[y_in_lcu * LCU_WIDTH_C + x_in_lcu]))) :
_mm256_slli_epi32(_mm256_cvtepu8_epi32(_mm_cvtsi32_si128(*(int32_t*) &(lcu->rec.v[y_in_lcu * LCU_WIDTH_C + x_in_lcu]))), 14 - KVZ_BIT_DEPTH);
// (sample1 + sample2 + offset)>>shift
temp_v_epi32 = _mm256_add_epi32(sample0_epi32, sample1_epi32);
temp_v_epi32 = _mm256_add_epi32(temp_v_epi32, offset_epi32);
temp_v_epi32 = _mm256_srai_epi32(temp_v_epi32, shift);
temp_epi16 = _mm256_packs_epi32(temp_u_epi32, temp_u_epi32);
temp_epi16 = _mm256_permute4x64_epi64(temp_epi16, _MM_SHUFFLE(3, 1, 2, 0));
temp_epi8 = _mm256_packus_epi16(temp_epi16, temp_epi16);
pointer = (int32_t*)&(lcu->rec.u[(y_in_lcu)* LCU_WIDTH_C + x_in_lcu]);
*pointer = _mm_cvtsi128_si32(_mm256_castsi256_si128(temp_epi8));
temp_epi16 = _mm256_packs_epi32(temp_v_epi32, temp_v_epi32);
temp_epi16 = _mm256_permute4x64_epi64(temp_epi16, _MM_SHUFFLE(3, 1, 2, 0));
temp_epi8 = _mm256_packus_epi16(temp_epi16, temp_epi16);
pointer = (int32_t*)&(lcu->rec.v[(y_in_lcu)* LCU_WIDTH_C + x_in_lcu]);
*pointer = _mm_cvtsi128_si32(_mm256_castsi256_si128(temp_epi8));
for (int temp_i = 4; temp_i < width >> 1; ++temp_i) {
// Use only if width>>1 is not divideble by 4
int temp_x_in_lcu = (((xpos >> 1) + temp_i) & (LCU_WIDTH_C - 1));
int16_t sample0_u = (hi_prec_chroma_rec0 ? high_precision_rec0->u[y_in_lcu * LCU_WIDTH_C + temp_x_in_lcu] : (temp_lcu_u[y_in_lcu * LCU_WIDTH_C + temp_x_in_lcu] << (14 - KVZ_BIT_DEPTH)));
int16_t sample1_u = (hi_prec_chroma_rec1 ? high_precision_rec1->u[y_in_lcu * LCU_WIDTH_C + temp_x_in_lcu] : (lcu->rec.u[y_in_lcu * LCU_WIDTH_C + temp_x_in_lcu] << (14 - KVZ_BIT_DEPTH)));
lcu->rec.u[y_in_lcu * LCU_WIDTH_C + temp_x_in_lcu] = (uint8_t)kvz_fast_clip_32bit_to_pixel((sample0_u + sample1_u + offset) >> shift);
int16_t sample0_v = (hi_prec_chroma_rec0 ? high_precision_rec0->v[y_in_lcu * LCU_WIDTH_C + temp_x_in_lcu] : (temp_lcu_v[y_in_lcu * LCU_WIDTH_C + temp_x_in_lcu] << (14 - KVZ_BIT_DEPTH)));
int16_t sample1_v = (hi_prec_chroma_rec1 ? high_precision_rec1->v[y_in_lcu * LCU_WIDTH_C + temp_x_in_lcu] : (lcu->rec.v[y_in_lcu * LCU_WIDTH_C + temp_x_in_lcu] << (14 - KVZ_BIT_DEPTH)));
lcu->rec.v[y_in_lcu * LCU_WIDTH_C + temp_x_in_lcu] = (uint8_t)kvz_fast_clip_32bit_to_pixel((sample0_v + sample1_v + offset) >> shift);
}
} else {
// Load 8 pixels to vector
sample0_epi32 = hi_prec_chroma_rec0 ? _mm256_cvtepi16_epi32(_mm_loadu_si128((__m128i*) &(high_precision_rec0->u[y_in_lcu * LCU_WIDTH_C + x_in_lcu]))) :
_mm256_slli_epi32(_mm256_cvtepu8_epi32(_mm_loadl_epi64((__m128i*) &(temp_lcu_u[y_in_lcu * LCU_WIDTH_C + x_in_lcu]))), 14 - KVZ_BIT_DEPTH);
sample1_epi32 = hi_prec_chroma_rec1 ? _mm256_cvtepi16_epi32(_mm_loadu_si128((__m128i*) &(high_precision_rec1->u[y_in_lcu * LCU_WIDTH_C + x_in_lcu]))) :
_mm256_slli_epi32(_mm256_cvtepu8_epi32(_mm_loadl_epi64((__m128i*) &(lcu->rec.u[y_in_lcu * LCU_WIDTH_C + x_in_lcu]))), 14 - KVZ_BIT_DEPTH);
// (sample1 + sample2 + offset)>>shift
temp_u_epi32 = _mm256_add_epi32(sample0_epi32, sample1_epi32);
temp_u_epi32 = _mm256_add_epi32(temp_u_epi32, offset_epi32);
temp_u_epi32 = _mm256_srai_epi32(temp_u_epi32, shift);
sample0_epi32 = hi_prec_chroma_rec0 ? _mm256_cvtepi16_epi32(_mm_loadu_si128((__m128i*) &(high_precision_rec0->v[y_in_lcu * LCU_WIDTH_C + x_in_lcu]))) :
_mm256_slli_epi32(_mm256_cvtepu8_epi32(_mm_loadl_epi64((__m128i*) &(temp_lcu_v[y_in_lcu * LCU_WIDTH_C + x_in_lcu]))), 14 - KVZ_BIT_DEPTH);
sample1_epi32 = hi_prec_chroma_rec1 ? _mm256_cvtepi16_epi32(_mm_loadu_si128((__m128i*) &(high_precision_rec1->v[y_in_lcu * LCU_WIDTH_C + x_in_lcu]))) :
_mm256_slli_epi32(_mm256_cvtepu8_epi32(_mm_loadl_epi64((__m128i*) &(lcu->rec.v[y_in_lcu * LCU_WIDTH_C + x_in_lcu]))), 14 - KVZ_BIT_DEPTH);
// (sample1 + sample2 + offset)>>shift
temp_v_epi32 = _mm256_add_epi32(sample0_epi32, sample1_epi32);
temp_v_epi32 = _mm256_add_epi32(temp_v_epi32, offset_epi32);
temp_v_epi32 = _mm256_srai_epi32(temp_v_epi32, shift);
temp_epi16 = _mm256_packs_epi32(temp_u_epi32, temp_u_epi32);
temp_epi16 = _mm256_permute4x64_epi64(temp_epi16, _MM_SHUFFLE(3, 1, 2, 0));
temp_epi8 = _mm256_packus_epi16(temp_epi16, temp_epi16);
// Store 64-bit integer into memory
_mm_storel_epi64((__m128i*)&(lcu->rec.u[(y_in_lcu)* LCU_WIDTH_C + x_in_lcu]), _mm256_castsi256_si128(temp_epi8));
temp_epi16 = _mm256_packs_epi32(temp_v_epi32, temp_v_epi32);
temp_epi16 = _mm256_permute4x64_epi64(temp_epi16, _MM_SHUFFLE(3, 1, 2, 0));
temp_epi8 = _mm256_packus_epi16(temp_epi16, temp_epi16);
// Store 64-bit integer into memory
_mm_storel_epi64((__m128i*)&(lcu->rec.v[(y_in_lcu)* LCU_WIDTH_C + x_in_lcu]), _mm256_castsi256_si128(temp_epi8));
}
}
}
}
}
}
static optimized_sad_func_ptr_t get_optimized_sad_avx2(int32_t width)
{
if (width == 0)
return reg_sad_w0;
if (width == 4)
return reg_sad_w4;
if (width == 8)
return reg_sad_w8;
if (width == 12)
return reg_sad_w12;
if (width == 16)
return reg_sad_w16;
if (width == 24)
return reg_sad_w24;
if (width == 32)
return reg_sad_w32;
if (width == 64)
return reg_sad_w64;
else
return NULL;
}
static uint32_t ver_sad_avx2(const uint8_t *pic_data, const uint8_t *ref_data,
int32_t width, int32_t height, uint32_t stride)
{
if (width == 0)
return 0;
if (width == 4)
return ver_sad_w4(pic_data, ref_data, height, stride);
if (width == 8)
return ver_sad_w8(pic_data, ref_data, height, stride);
if (width == 12)
return ver_sad_w12(pic_data, ref_data, height, stride);
if (width == 16)
return ver_sad_w16(pic_data, ref_data, height, stride);
else
return ver_sad_arbitrary(pic_data, ref_data, width, height, stride);
}
static uint32_t hor_sad_avx2(const uint8_t *pic_data, const uint8_t *ref_data,
int32_t width, int32_t height, uint32_t pic_stride,
uint32_t ref_stride, uint32_t left, uint32_t right)
{
if (width == 4)
return hor_sad_sse41_w4(pic_data, ref_data, height,
pic_stride, ref_stride, left, right);
if (width == 8)
return hor_sad_sse41_w8(pic_data, ref_data, height,
pic_stride, ref_stride, left, right);
if (width == 16)
return hor_sad_sse41_w16(pic_data, ref_data, height,
pic_stride, ref_stride, left, right);
if (width == 32)
return hor_sad_avx2_w32 (pic_data, ref_data, height,
pic_stride, ref_stride, left, right);
else
return hor_sad_sse41_arbitrary(pic_data, ref_data, width, height,
pic_stride, ref_stride, left, right);
}
static double pixel_var_avx2_largebuf(const uint8_t *buf, const uint32_t len)
{
const float len_f = (float)len;
const __m256i zero = _mm256_setzero_si256();
int64_t sum;
size_t i;
__m256i sums = zero;
for (i = 0; i + 31 < len; i += 32) {
__m256i curr = _mm256_loadu_si256((const __m256i *)(buf + i));
__m256i curr_sum = _mm256_sad_epu8(curr, zero);
sums = _mm256_add_epi64(sums, curr_sum);
}
__m128i sum_lo = _mm256_castsi256_si128 (sums);
__m128i sum_hi = _mm256_extracti128_si256(sums, 1);
__m128i sum_3 = _mm_add_epi64 (sum_lo, sum_hi);
__m128i sum_4 = _mm_shuffle_epi32 (sum_3, _MM_SHUFFLE(1, 0, 3, 2));
__m128i sum_5 = _mm_add_epi64 (sum_3, sum_4);
_mm_storel_epi64((__m128i *)&sum, sum_5);
// Remaining len mod 32 pixels
for (; i < len; ++i) {
sum += buf[i];
}
float mean_f = (float)sum / len_f;
__m256 mean = _mm256_set1_ps(mean_f);
__m256 accum = _mm256_setzero_ps();
for (i = 0; i + 31 < len; i += 32) {
__m128i curr0 = _mm_loadl_epi64((const __m128i *)(buf + i + 0));
__m128i curr1 = _mm_loadl_epi64((const __m128i *)(buf + i + 8));
__m128i curr2 = _mm_loadl_epi64((const __m128i *)(buf + i + 16));
__m128i curr3 = _mm_loadl_epi64((const __m128i *)(buf + i + 24));
__m256i curr0_32 = _mm256_cvtepu8_epi32(curr0);
__m256i curr1_32 = _mm256_cvtepu8_epi32(curr1);
__m256i curr2_32 = _mm256_cvtepu8_epi32(curr2);
__m256i curr3_32 = _mm256_cvtepu8_epi32(curr3);
__m256 curr0_f = _mm256_cvtepi32_ps (curr0_32);
__m256 curr1_f = _mm256_cvtepi32_ps (curr1_32);
__m256 curr2_f = _mm256_cvtepi32_ps (curr2_32);
__m256 curr3_f = _mm256_cvtepi32_ps (curr3_32);
__m256 curr0_sd = _mm256_sub_ps (curr0_f, mean);
__m256 curr1_sd = _mm256_sub_ps (curr1_f, mean);
__m256 curr2_sd = _mm256_sub_ps (curr2_f, mean);
__m256 curr3_sd = _mm256_sub_ps (curr3_f, mean);
__m256 curr0_v = _mm256_mul_ps (curr0_sd, curr0_sd);
__m256 curr1_v = _mm256_mul_ps (curr1_sd, curr1_sd);
__m256 curr2_v = _mm256_mul_ps (curr2_sd, curr2_sd);
__m256 curr3_v = _mm256_mul_ps (curr3_sd, curr3_sd);
__m256 curr01 = _mm256_add_ps (curr0_v, curr1_v);
__m256 curr23 = _mm256_add_ps (curr2_v, curr3_v);
__m256 curr = _mm256_add_ps (curr01, curr23);
accum = _mm256_add_ps (accum, curr);
}
__m256d accum_d = _mm256_castps_pd (accum);
__m256d accum2_d = _mm256_permute4x64_pd(accum_d, _MM_SHUFFLE(1, 0, 3, 2));
__m256 accum2 = _mm256_castpd_ps (accum2_d);
__m256 accum3 = _mm256_add_ps (accum, accum2);
__m256 accum4 = _mm256_permute_ps (accum3, _MM_SHUFFLE(1, 0, 3, 2));
__m256 accum5 = _mm256_add_ps (accum3, accum4);
__m256 accum6 = _mm256_permute_ps (accum5, _MM_SHUFFLE(2, 3, 0, 1));
__m256 accum7 = _mm256_add_ps (accum5, accum6);
__m128 accum8 = _mm256_castps256_ps128(accum7);
float var_sum = _mm_cvtss_f32 (accum8);
// Remaining len mod 32 pixels
for (; i < len; ++i) {
float diff = buf[i] - mean_f;
var_sum += diff * diff;
}
return var_sum / len_f;
}
#ifdef INACCURATE_VARIANCE_CALCULATION
// Assumes that u is a power of two
static INLINE uint32_t ilog2(uint32_t u)
{
return _tzcnt_u32(u);
}
// A B C D | E F G H (8x32b)
// ==>
// A+B C+D | E+F G+H (4x64b)
static __m256i hsum_epi32_to_epi64(const __m256i v)
{
const __m256i zero = _mm256_setzero_si256();
__m256i v_shufd = _mm256_shuffle_epi32(v, _MM_SHUFFLE(3, 3, 1, 1));
__m256i sums_32 = _mm256_add_epi32 (v, v_shufd);
__m256i sums_64 = _mm256_blend_epi32 (sums_32, zero, 0xaa);
return sums_64;
}
static double pixel_var_avx2(const uint8_t *buf, const uint32_t len)
{
assert(sizeof(*buf) == 1);
assert((len & 31) == 0);
// Uses Q8.7 numbers to measure mean and deviation, so variances are Q16.14
const uint64_t sum_maxwid = ilog2(len) + (8 * sizeof(*buf));
const __m128i normalize_sum = _mm_cvtsi32_si128(sum_maxwid - 15); // Normalize mean to [0, 32767], so signed 16-bit subtraction never overflows
const __m128i debias_sum = _mm_cvtsi32_si128(1 << (sum_maxwid - 16));
const float varsum_to_f = 1.0f / (float)(1 << (14 + ilog2(len)));
const bool power_of_two = (len & (len - 1)) == 0;
if (sum_maxwid > 32 || sum_maxwid < 15 || !power_of_two) {
return pixel_var_avx2_largebuf(buf, len);
}
const __m256i zero = _mm256_setzero_si256();
const __m256i himask_15 = _mm256_set1_epi16(0x7f00);
uint64_t vars;
size_t i;
__m256i sums = zero;
for (i = 0; i < len; i += 32) {
__m256i curr = _mm256_loadu_si256((const __m256i *)(buf + i));
__m256i curr_sum = _mm256_sad_epu8(curr, zero);
sums = _mm256_add_epi64(sums, curr_sum);
}
__m128i sum_lo = _mm256_castsi256_si128 (sums);
__m128i sum_hi = _mm256_extracti128_si256(sums, 1);
__m128i sum_3 = _mm_add_epi64 (sum_lo, sum_hi);
__m128i sum_4 = _mm_shuffle_epi32 (sum_3, _MM_SHUFFLE(1, 0, 3, 2));
__m128i sum_5 = _mm_add_epi64 (sum_3, sum_4);
__m128i sum_5n = _mm_srl_epi32 (sum_5, normalize_sum);
sum_5n = _mm_add_epi32 (sum_5n, debias_sum);
__m256i sum_n = _mm256_broadcastw_epi16 (sum_5n);
__m256i accum = zero;
for (i = 0; i < len; i += 32) {
__m256i curr = _mm256_loadu_si256((const __m256i *)(buf + i));
__m256i curr0 = _mm256_slli_epi16 (curr, 7);
__m256i curr1 = _mm256_srli_epi16 (curr, 1);
curr0 = _mm256_and_si256 (curr0, himask_15);
curr1 = _mm256_and_si256 (curr1, himask_15);
__m256i dev0 = _mm256_sub_epi16 (curr0, sum_n);
__m256i dev1 = _mm256_sub_epi16 (curr1, sum_n);
__m256i vars0 = _mm256_madd_epi16 (dev0, dev0);
__m256i vars1 = _mm256_madd_epi16 (dev1, dev1);
__m256i varsum = _mm256_add_epi32 (vars0, vars1);
varsum = hsum_epi32_to_epi64(varsum);
accum = _mm256_add_epi64 (accum, varsum);
}
__m256i accum2 = _mm256_permute4x64_epi64(accum, _MM_SHUFFLE(1, 0, 3, 2));
__m256i accum3 = _mm256_add_epi64 (accum, accum2);
__m256i accum4 = _mm256_permute4x64_epi64(accum3, _MM_SHUFFLE(2, 3, 1, 0));
__m256i v_tot = _mm256_add_epi64 (accum3, accum4);
__m128i vt128 = _mm256_castsi256_si128 (v_tot);
_mm_storel_epi64((__m128i *)&vars, vt128);
return (float)vars * varsum_to_f;
}
#else // INACCURATE_VARIANCE_CALCULATION
static double pixel_var_avx2(const uint8_t *buf, const uint32_t len)
{
return pixel_var_avx2_largebuf(buf, len);
}
#endif // !INACCURATE_VARIANCE_CALCULATION
#endif // KVZ_BIT_DEPTH == 8
#endif //COMPILE_INTEL_AVX2
int kvz_strategy_register_picture_avx2(void* opaque, uint8_t bitdepth)
{
bool success = true;
#if COMPILE_INTEL_AVX2
#if KVZ_BIT_DEPTH == 8
// We don't actually use SAD for intra right now, other than 4x4 for
// transform skip, but we might again one day and this is some of the
// simplest code to look at for anyone interested in doing more
// optimizations, so it's worth it to keep this maintained.
if (bitdepth == 8){
success &= kvz_strategyselector_register(opaque, "reg_sad", "avx2", 40, &kvz_reg_sad_avx2);
success &= kvz_strategyselector_register(opaque, "sad_8x8", "avx2", 40, &sad_8bit_8x8_avx2);
success &= kvz_strategyselector_register(opaque, "sad_16x16", "avx2", 40, &sad_8bit_16x16_avx2);
success &= kvz_strategyselector_register(opaque, "sad_32x32", "avx2", 40, &sad_8bit_32x32_avx2);
success &= kvz_strategyselector_register(opaque, "sad_64x64", "avx2", 40, &sad_8bit_64x64_avx2);
success &= kvz_strategyselector_register(opaque, "satd_4x4", "avx2", 40, &satd_4x4_8bit_avx2);
success &= kvz_strategyselector_register(opaque, "satd_8x8", "avx2", 40, &satd_8x8_8bit_avx2);
success &= kvz_strategyselector_register(opaque, "satd_16x16", "avx2", 40, &satd_16x16_8bit_avx2);
success &= kvz_strategyselector_register(opaque, "satd_32x32", "avx2", 40, &satd_32x32_8bit_avx2);
success &= kvz_strategyselector_register(opaque, "satd_64x64", "avx2", 40, &satd_64x64_8bit_avx2);
success &= kvz_strategyselector_register(opaque, "satd_4x4_dual", "avx2", 40, &satd_8bit_4x4_dual_avx2);
success &= kvz_strategyselector_register(opaque, "satd_8x8_dual", "avx2", 40, &satd_8bit_8x8_dual_avx2);
success &= kvz_strategyselector_register(opaque, "satd_16x16_dual", "avx2", 40, &satd_8bit_16x16_dual_avx2);
success &= kvz_strategyselector_register(opaque, "satd_32x32_dual", "avx2", 40, &satd_8bit_32x32_dual_avx2);
success &= kvz_strategyselector_register(opaque, "satd_64x64_dual", "avx2", 40, &satd_8bit_64x64_dual_avx2);
success &= kvz_strategyselector_register(opaque, "satd_any_size", "avx2", 40, &satd_any_size_8bit_avx2);
success &= kvz_strategyselector_register(opaque, "satd_any_size_quad", "avx2", 40, &satd_any_size_quad_avx2);
success &= kvz_strategyselector_register(opaque, "pixels_calc_ssd", "avx2", 40, &pixels_calc_ssd_avx2);
success &= kvz_strategyselector_register(opaque, "inter_recon_bipred", "avx2", 40, &inter_recon_bipred_avx2);
success &= kvz_strategyselector_register(opaque, "get_optimized_sad", "avx2", 40, &get_optimized_sad_avx2);
success &= kvz_strategyselector_register(opaque, "ver_sad", "avx2", 40, &ver_sad_avx2);
success &= kvz_strategyselector_register(opaque, "hor_sad", "avx2", 40, &hor_sad_avx2);
success &= kvz_strategyselector_register(opaque, "pixel_var", "avx2", 40, &pixel_var_avx2);
}
#endif // KVZ_BIT_DEPTH == 8
#endif
return success;
}