uvg266/src/strategies/sse41/picture-sse41.c
2019-03-01 15:37:38 +02:00

231 lines
10 KiB
C

/*****************************************************************************
* This file is part of Kvazaar HEVC encoder.
*
* Copyright (C) 2013-2015 Tampere University of Technology and others (see
* COPYING file).
*
* Kvazaar is free software: you can redistribute it and/or modify it under
* the terms of the GNU Lesser General Public License as published by the
* Free Software Foundation; either version 2.1 of the License, or (at your
* option) any later version.
*
* Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with Kvazaar. If not, see <http://www.gnu.org/licenses/>.
****************************************************************************/
#include "strategies/sse41/picture-sse41.h"
#include "strategies/sse41/reg_sad_pow2_widths-sse41.h"
#if COMPILE_INTEL_SSE41
#include <immintrin.h>
#include <stdlib.h>
#include "kvazaar.h"
#include "strategyselector.h"
uint32_t kvz_reg_sad_sse41(const kvz_pixel * const data1, const kvz_pixel * const data2,
const int32_t width, const int32_t height, const uint32_t stride1,
const uint32_t stride2)
{
if (width == 0)
return 0;
if (width == 4)
return reg_sad_w4(data1, data2, height, stride1, stride2);
if (width == 8)
return reg_sad_w8(data1, data2, height, stride1, stride2);
if (width == 12)
return reg_sad_w12(data1, data2, height, stride1, stride2);
if (width == 16)
return reg_sad_w16(data1, data2, height, stride1, stride2);
if (width == 24)
return reg_sad_w24(data1, data2, height, stride1, stride2);
else
return reg_sad_arbitrary(data1, data2, width, height, stride1, stride2);
}
static optimized_sad_func_ptr_t get_optimized_sad_sse41(int32_t width)
{
if (width == 0)
return reg_sad_w0;
if (width == 4)
return reg_sad_w4;
if (width == 8)
return reg_sad_w8;
if (width == 12)
return reg_sad_w12;
if (width == 16)
return reg_sad_w16;
if (width == 24)
return reg_sad_w24;
else
return NULL;
}
static uint32_t ver_sad_sse41(const kvz_pixel *pic_data, const kvz_pixel *ref_data,
int32_t width, int32_t height, uint32_t stride)
{
if (width == 0)
return 0;
if (width == 4)
return ver_sad_w4(pic_data, ref_data, height, stride);
if (width == 8)
return ver_sad_w8(pic_data, ref_data, height, stride);
if (width == 12)
return ver_sad_w12(pic_data, ref_data, height, stride);
if (width == 16)
return ver_sad_w16(pic_data, ref_data, height, stride);
else
return ver_sad_arbitrary(pic_data, ref_data, width, height, stride);
}
static uint32_t hor_sad_sse41_w32(const kvz_pixel *pic_data, const kvz_pixel *ref_data,
int32_t height, uint32_t pic_stride, uint32_t ref_stride,
uint32_t left, uint32_t right)
{
const size_t vec_width = 16;
const uint32_t blkwidth_log2 = 5;
const uint32_t left_eq_wid = left >> blkwidth_log2;
const uint32_t right_eq_wid = right >> blkwidth_log2;
const int32_t left_clamped = left - left_eq_wid;
const int32_t right_clamped = right - right_eq_wid;
const int32_t height_twoline_groups = height & ~1;
const int32_t height_residual_lines = height & 1;
const __m128i zero = _mm_setzero_si128();
const __m128i vec_widths = _mm_set1_epi8((uint8_t)vec_width);
const __m128i lefts = _mm_set1_epi8((uint8_t)left_clamped);
const __m128i rights = _mm_set1_epi8((uint8_t)right_clamped);
const __m128i nslo = _mm_setr_epi8(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);
const __m128i nshi = _mm_add_epi8 (nslo, vec_widths);
const __m128i rightmost_good_idx = _mm_set1_epi8((uint8_t)((vec_width << 1) - right - 1));
const __m128i epol_mask_right_lo = _mm_min_epi8 (nslo, rightmost_good_idx);
const __m128i epol_mask_right_hi = _mm_min_epi8 (nshi, rightmost_good_idx);
const __m128i epol_mask_lo = _mm_max_epi8 (lefts, epol_mask_right_lo);
const __m128i epol_mask_hi = _mm_max_epi8 (lefts, epol_mask_right_hi);
const __m128i is_left = _mm_cmpeq_epi8(rights, zero);
const __m128i vecwid_for_left = _mm_and_si128 (is_left, vec_widths);
const __m128i ns_for_shufmask = _mm_or_si128 (nslo, vecwid_for_left);
const __m128i shufmask1_right = _mm_add_epi8 (ns_for_shufmask, rights);
const __m128i shufmask1 = _mm_sub_epi8 (shufmask1_right, lefts);
const __m128i md2bimask = _mm_cmpgt_epi8(vec_widths, shufmask1);
const __m128i move_d_to_b_imask = _mm_or_si128 (is_left, md2bimask);
const __m128i move_b_to_d_mask = _mm_cmpgt_epi8(lefts, nslo);
// If we're straddling the left border, start from the left border instead,
// and if right border, end on the border
const int32_t ld_offset = left - right;
int32_t y;
__m128i sse_inc = _mm_setzero_si128();
for (y = 0; y < height_twoline_groups; y += 2) {
__m128i a = _mm_loadu_si128((__m128i *)(pic_data + (y + 0) * pic_stride + 0));
__m128i b = _mm_loadu_si128((__m128i *)(ref_data + (y + 0) * ref_stride + 0 + ld_offset));
__m128i c = _mm_loadu_si128((__m128i *)(pic_data + (y + 0) * pic_stride + 16));
__m128i d = _mm_loadu_si128((__m128i *)(ref_data + (y + 0) * ref_stride + 16 + ld_offset));
__m128i e = _mm_loadu_si128((__m128i *)(pic_data + (y + 1) * pic_stride + 0));
__m128i f = _mm_loadu_si128((__m128i *)(ref_data + (y + 1) * ref_stride + 0 + ld_offset));
__m128i g = _mm_loadu_si128((__m128i *)(pic_data + (y + 1) * pic_stride + 16));
__m128i h = _mm_loadu_si128((__m128i *)(ref_data + (y + 1) * ref_stride + 16 + ld_offset));
__m128i b_shifted = _mm_shuffle_epi8(b, shufmask1);
__m128i d_shifted = _mm_shuffle_epi8(d, shufmask1);
__m128i f_shifted = _mm_shuffle_epi8(f, shufmask1);
__m128i h_shifted = _mm_shuffle_epi8(h, shufmask1);
// TODO: could these be optimized for two-operand efficiency? Only one of
// these ever does useful work, the other should leave the vector untouched,
// so could the first result be used in the second calculation or something?
__m128i b_with_d_data = _mm_blendv_epi8(d_shifted, b_shifted, move_d_to_b_imask);
__m128i d_with_b_data = _mm_blendv_epi8(d_shifted, b_shifted, move_b_to_d_mask);
__m128i f_with_h_data = _mm_blendv_epi8(h_shifted, f_shifted, move_d_to_b_imask);
__m128i h_with_f_data = _mm_blendv_epi8(h_shifted, f_shifted, move_b_to_d_mask);
__m128i b_final = _mm_shuffle_epi8(b_with_d_data, epol_mask_lo);
__m128i d_final = _mm_shuffle_epi8(d_with_b_data, epol_mask_hi);
__m128i f_final = _mm_shuffle_epi8(f_with_h_data, epol_mask_lo);
__m128i h_final = _mm_shuffle_epi8(h_with_f_data, epol_mask_hi);
__m128i curr_sads_ab = _mm_sad_epu8 (a, b_final);
__m128i curr_sads_cd = _mm_sad_epu8 (c, d_final);
__m128i curr_sads_ef = _mm_sad_epu8 (e, f_final);
__m128i curr_sads_gh = _mm_sad_epu8 (g, h_final);
sse_inc = _mm_add_epi64(sse_inc, curr_sads_ab);
sse_inc = _mm_add_epi64(sse_inc, curr_sads_cd);
sse_inc = _mm_add_epi64(sse_inc, curr_sads_ef);
sse_inc = _mm_add_epi64(sse_inc, curr_sads_gh);
}
if (height_residual_lines) {
__m128i a = _mm_loadu_si128((__m128i *)(pic_data + (y + 0) * pic_stride + 0));
__m128i b = _mm_loadu_si128((__m128i *)(ref_data + (y + 0) * ref_stride + 0 + ld_offset));
__m128i c = _mm_loadu_si128((__m128i *)(pic_data + (y + 0) * pic_stride + 16));
__m128i d = _mm_loadu_si128((__m128i *)(ref_data + (y + 0) * ref_stride + 16 + ld_offset));
__m128i b_shifted = _mm_shuffle_epi8(b, shufmask1);
__m128i d_shifted = _mm_shuffle_epi8(d, shufmask1);
__m128i b_with_d_data = _mm_blendv_epi8(d_shifted, b_shifted, move_d_to_b_imask);
__m128i d_with_b_data = _mm_blendv_epi8(d_shifted, b_shifted, move_b_to_d_mask);
__m128i b_final = _mm_shuffle_epi8(b_with_d_data, epol_mask_lo);
__m128i d_final = _mm_shuffle_epi8(d_with_b_data, epol_mask_hi);
__m128i curr_sads_ab = _mm_sad_epu8 (a, b_final);
__m128i curr_sads_cd = _mm_sad_epu8 (c, d_final);
sse_inc = _mm_add_epi64(sse_inc, curr_sads_ab);
sse_inc = _mm_add_epi64(sse_inc, curr_sads_cd);
}
__m128i sse_inc_2 = _mm_shuffle_epi32(sse_inc, _MM_SHUFFLE(1, 0, 3, 2));
__m128i sad = _mm_add_epi64 (sse_inc, sse_inc_2);
return _mm_cvtsi128_si32(sad);
}
static uint32_t hor_sad_sse41(const kvz_pixel *pic_data, const kvz_pixel *ref_data,
int32_t width, int32_t height, uint32_t pic_stride,
uint32_t ref_stride, uint32_t left, uint32_t right)
{
if (width == 4)
return hor_sad_sse41_w4(pic_data, ref_data, height,
pic_stride, ref_stride, left, right);
if (width == 8)
return hor_sad_sse41_w8(pic_data, ref_data, height,
pic_stride, ref_stride, left, right);
if (width == 16)
return hor_sad_sse41_w16(pic_data, ref_data, height,
pic_stride, ref_stride, left, right);
if (width == 32)
return hor_sad_sse41_w32(pic_data, ref_data, height,
pic_stride, ref_stride, left, right);
else
return hor_sad_sse41_arbitrary(pic_data, ref_data, width, height,
pic_stride, ref_stride, left, right);
}
#endif //COMPILE_INTEL_SSE41
int kvz_strategy_register_picture_sse41(void* opaque, uint8_t bitdepth) {
bool success = true;
#if COMPILE_INTEL_SSE41
if (bitdepth == 8){
success &= kvz_strategyselector_register(opaque, "reg_sad", "sse41", 20, &kvz_reg_sad_sse41);
success &= kvz_strategyselector_register(opaque, "get_optimized_sad", "sse41", 20, &get_optimized_sad_sse41);
success &= kvz_strategyselector_register(opaque, "ver_sad", "sse41", 20, &ver_sad_sse41);
success &= kvz_strategyselector_register(opaque, "hor_sad", "sse41", 20, &hor_sad_sse41);
}
#endif
return success;
}