mirror of
https://gitlab.com/sheaf/metabrush.git
synced 2024-11-05 14:53:37 +00:00
add signed curvature computation
This commit is contained in:
parent
7431e8ba67
commit
15d50f8d76
|
@ -18,7 +18,7 @@ module Math.Bezier.Cubic
|
||||||
( Bezier(..)
|
( Bezier(..)
|
||||||
, fromQuadratic
|
, fromQuadratic
|
||||||
, bezier, bezier', bezier''
|
, bezier, bezier', bezier''
|
||||||
, curvature, squaredCurvature
|
, curvature, squaredCurvature, signedCurvature
|
||||||
, subdivide
|
, subdivide
|
||||||
, ddist, closestPoint
|
, ddist, closestPoint
|
||||||
, drag, selfIntersectionParameters
|
, drag, selfIntersectionParameters
|
||||||
|
@ -70,12 +70,13 @@ import Math.Epsilon
|
||||||
import Math.Module
|
import Math.Module
|
||||||
( Module (..)
|
( Module (..)
|
||||||
, lerp
|
, lerp
|
||||||
, Inner(..), squaredNorm
|
, Inner(..), norm, squaredNorm
|
||||||
|
, cross
|
||||||
)
|
)
|
||||||
import Math.Roots
|
import Math.Roots
|
||||||
( realRoots, solveQuadratic )
|
( realRoots, solveQuadratic )
|
||||||
import Math.Vector2D
|
import Math.Vector2D
|
||||||
( Point2D(..) )
|
( Point2D(..), Vector2D(..) )
|
||||||
|
|
||||||
--------------------------------------------------------------------------------
|
--------------------------------------------------------------------------------
|
||||||
|
|
||||||
|
@ -125,11 +126,11 @@ bezier'' ( Bezier {..} ) t
|
||||||
( p1 --> p0 ^+^ p1 --> p2 )
|
( p1 --> p0 ^+^ p1 --> p2 )
|
||||||
( p2 --> p1 ^+^ p2 --> p3 )
|
( p2 --> p1 ^+^ p2 --> p3 )
|
||||||
|
|
||||||
-- | Curvature of a quadratic Bézier curve.
|
-- | Curvature of a cubic Bézier curve.
|
||||||
curvature :: forall v r p. ( Torsor v p, Inner r v, RealFloat r ) => Bezier p -> r -> r
|
curvature :: forall v r p. ( Torsor v p, Inner r v, RealFloat r ) => Bezier p -> r -> r
|
||||||
curvature bez t = sqrt $ squaredCurvature @v bez t
|
curvature bez t = sqrt $ squaredCurvature @v bez t
|
||||||
|
|
||||||
-- | Square of curvature of a quadratic Bézier curve.
|
-- | Square of curvature of a cubic Bézier curve.
|
||||||
squaredCurvature :: forall v r p. ( Torsor v p, Inner r v, RealFloat r ) => Bezier p -> r -> r
|
squaredCurvature :: forall v r p. ( Torsor v p, Inner r v, RealFloat r ) => Bezier p -> r -> r
|
||||||
squaredCurvature bez t
|
squaredCurvature bez t
|
||||||
| sq_nm_g' < epsilon
|
| sq_nm_g' < epsilon
|
||||||
|
@ -144,6 +145,13 @@ squaredCurvature bez t
|
||||||
sq_nm_g' :: r
|
sq_nm_g' :: r
|
||||||
sq_nm_g' = squaredNorm @v g'
|
sq_nm_g' = squaredNorm @v g'
|
||||||
|
|
||||||
|
-- | Signed curvature of a planar cubic Bézier curve.
|
||||||
|
signedCurvature :: forall r. Floating r => Bezier ( Point2D r ) -> r -> r
|
||||||
|
signedCurvature bez t = ( g' `cross` g'' ) / norm g'
|
||||||
|
where
|
||||||
|
g', g'' :: Vector2D r
|
||||||
|
g' = bezier' @( Vector2D r ) bez t
|
||||||
|
g'' = bezier'' @( Vector2D r ) bez t
|
||||||
|
|
||||||
-- | Subdivide a cubic Bézier curve into two parts.
|
-- | Subdivide a cubic Bézier curve into two parts.
|
||||||
subdivide :: forall v r p. ( Torsor v p, Module r v ) => Bezier p -> r -> ( Bezier p, Bezier p )
|
subdivide :: forall v r p. ( Torsor v p, Module r v ) => Bezier p -> r -> ( Bezier p, Bezier p )
|
||||||
|
|
|
@ -15,7 +15,7 @@
|
||||||
module Math.Bezier.Quadratic
|
module Math.Bezier.Quadratic
|
||||||
( Bezier(..)
|
( Bezier(..)
|
||||||
, bezier, bezier', bezier''
|
, bezier, bezier', bezier''
|
||||||
, curvature, squaredCurvature
|
, curvature, squaredCurvature, signedCurvature
|
||||||
, subdivide
|
, subdivide
|
||||||
, ddist, closestPoint
|
, ddist, closestPoint
|
||||||
, interpolate
|
, interpolate
|
||||||
|
@ -65,10 +65,13 @@ import Math.Epsilon
|
||||||
import Math.Module
|
import Math.Module
|
||||||
( Module (..)
|
( Module (..)
|
||||||
, lerp
|
, lerp
|
||||||
, Inner(..), squaredNorm
|
, Inner(..), norm, squaredNorm
|
||||||
|
, cross
|
||||||
)
|
)
|
||||||
import Math.Roots
|
import Math.Roots
|
||||||
( realRoots )
|
( realRoots )
|
||||||
|
import Math.Vector2D
|
||||||
|
( Point2D(..), Vector2D(..) )
|
||||||
|
|
||||||
--------------------------------------------------------------------------------
|
--------------------------------------------------------------------------------
|
||||||
|
|
||||||
|
@ -119,6 +122,14 @@ squaredCurvature bez t
|
||||||
sq_nm_g' :: r
|
sq_nm_g' :: r
|
||||||
sq_nm_g' = squaredNorm @v g'
|
sq_nm_g' = squaredNorm @v g'
|
||||||
|
|
||||||
|
-- | Signed curvature of a planar quadratic Bézier curve.
|
||||||
|
signedCurvature :: forall r. Floating r => Bezier ( Point2D r ) -> r -> r
|
||||||
|
signedCurvature bez t = ( g' `cross` g'' ) / norm g'
|
||||||
|
where
|
||||||
|
g', g'' :: Vector2D r
|
||||||
|
g' = bezier' @( Vector2D r ) bez t
|
||||||
|
g'' = bezier'' @( Vector2D r ) bez
|
||||||
|
|
||||||
-- | Subdivide a quadratic Bézier curve into two parts.
|
-- | Subdivide a quadratic Bézier curve into two parts.
|
||||||
subdivide :: forall v r p. ( Torsor v p, Module r v ) => Bezier p -> r -> ( Bezier p, Bezier p )
|
subdivide :: forall v r p. ( Torsor v p, Module r v ) => Bezier p -> r -> ( Bezier p, Bezier p )
|
||||||
subdivide ( Bezier {..} ) t = ( Bezier p0 q1 pt, Bezier pt r1 p2 )
|
subdivide ( Bezier {..} ) t = ( Bezier p0 q1 pt, Bezier pt r1 p2 )
|
||||||
|
|
|
@ -9,7 +9,7 @@
|
||||||
module Math.Module
|
module Math.Module
|
||||||
( Module(..), lerp
|
( Module(..), lerp
|
||||||
, Inner(..)
|
, Inner(..)
|
||||||
, squaredNorm, quadrance, distance
|
, norm, squaredNorm, quadrance, distance
|
||||||
, proj, projC, closestPointOnSegment
|
, proj, projC, closestPointOnSegment
|
||||||
, cross
|
, cross
|
||||||
, strictlyParallel, convexCombination
|
, strictlyParallel, convexCombination
|
||||||
|
@ -75,6 +75,10 @@ infixl 8 ^.^
|
||||||
class Module r m => Inner r m where
|
class Module r m => Inner r m where
|
||||||
(^.^) :: m -> m -> r
|
(^.^) :: m -> m -> r
|
||||||
|
|
||||||
|
-- | Norm of a vector, computed using the inner product.
|
||||||
|
norm :: forall m r. ( Floating r, Inner r m ) => m -> r
|
||||||
|
norm = sqrt . squaredNorm
|
||||||
|
|
||||||
-- | Squared norm of a vector, computed using the inner product.
|
-- | Squared norm of a vector, computed using the inner product.
|
||||||
squaredNorm :: forall m r. Inner r m => m -> r
|
squaredNorm :: forall m r. Inner r m => m -> r
|
||||||
squaredNorm v = v ^.^ v
|
squaredNorm v = v ^.^ v
|
||||||
|
|
Loading…
Reference in a new issue