uvg266/src/search.c

330 lines
11 KiB
C
Raw Normal View History

/**
* HEVC Encoder
* - Marko Viitanen ( fador at iki.fi ), Tampere University of Technology, Department of Pervasive Computing.
*/
/*! \file search.c
\brief searching
\author Marko Viitanen
\date 2013-04
Search related functions
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "global.h"
#include "config.h"
#include "bitstream.h"
#include "picture.h"
2013-09-16 13:37:24 +00:00
#include "encoder.h"
#include "intra.h"
#include "inter.h"
#include "filter.h"
#include "search.h"
/**
*
*
* pic:
* pic_data: picture color data starting from the block MV is being searched for.
* ref_data: picture color data starting from the beginning of reference pic.
* cur_cu:
*/
void search_motion_vector(picture *pic, uint8_t *pic_data, uint8_t *ref_data, CU_info *cur_cu, unsigned step, int x, int y)
{
// TODO: Inter: Handle non-square blocks.
unsigned block_width = LCU_WIDTH_FROM_DEPTH(cur_cu->depth);
unsigned block_height = block_width;
// TODO: Inter: Calculating error outside picture borders.
// This prevents choosing vectors that need interpolating of borders to work.
if (x < 0 || y < 0 || x < pic->width - LCU_WIDTH || pic->height - LCU_WIDTH) return;
cur_cu->inter.mv[0] = x;
cur_cu->inter.mv[1] = y;
cur_cu->inter.cost = SAD(pic_data, &ref_data[y * pic->width + x], block_width, block_height, pic->width);
step /= 2;
if (step > 0) {
search_motion_vector(pic, pic_data, ref_data, cur_cu, step, x, y - step);
search_motion_vector(pic, pic_data, ref_data, cur_cu, step, x - step, y);
search_motion_vector(pic, pic_data, ref_data, cur_cu, step, x + step, y);
search_motion_vector(pic, pic_data, ref_data, cur_cu, step, x, y + step);
}
}
void search_buildReferenceBorder(picture* pic, int32_t xCtb, int32_t yCtb,int16_t outwidth, int16_t* dst, int32_t dststride, int8_t chroma)
{
int32_t leftColumn; /*!< left column iterator */
int16_t val; /*!< variable to store extrapolated value */
int32_t i; /*!< index iterator */
int16_t dcVal = 1<<(g_bitDepth-1); /*!< default predictor value */
int32_t topRow; /*!< top row iterator */
int32_t srcWidth = (pic->width>>(chroma?1:0)); /*!< source picture width */
int32_t srcHeight = (pic->height>>(chroma?1:0));/*!< source picture height */
uint8_t* srcPic = (!chroma)?pic->yData: ((chroma==1)?pic->uData: pic->vData); /*!< input picture pointer */
int16_t SCU_width = LCU_WIDTH>>(MAX_DEPTH+(chroma?1:0)); /*!< Smallest Coding Unit width */
uint8_t* srcShifted = &srcPic[xCtb*SCU_width+(yCtb*SCU_width)*srcWidth]; /*!< input picture pointer shifted to start from the left-top corner of the current block */
int32_t width_in_SCU = pic->width_in_LCU<<MAX_DEPTH; /*!< picture width in SCU */
/* Fill left column */
if(xCtb)
{
/* Loop SCU's */
for(leftColumn = 1; leftColumn < outwidth/SCU_width; leftColumn++)
{
/* If over the picture height or block not yet searched, stop */
if((yCtb+leftColumn)*SCU_width >= srcHeight || pic->CU[0][xCtb-1+(yCtb+leftColumn)*width_in_SCU].type == CU_NOTSET)
{
break;
}
}
/* Copy the pixels to output */
for(i = 0; i < leftColumn*SCU_width-1; i ++)
{
dst[(i+1)*dststride] = srcShifted[i*srcWidth-1];
}
/* if the loop was not completed, extrapolate the last pixel pushed to output */
if(leftColumn != outwidth/SCU_width)
{
val = srcShifted[(leftColumn*SCU_width-1)*srcWidth-1];
for(i = (leftColumn*SCU_width); i < outwidth; i++)
{
dst[i*dststride] = val;
}
}
}
/* If left column not available, copy from toprow or use the default predictor */
else
{
val = yCtb?srcShifted[-srcWidth]:dcVal;
for(i = 0; i < outwidth; i++)
{
dst[i*dststride] = val;
}
}
if(yCtb)
{
/* Loop top SCU's */
for(topRow = 1; topRow < outwidth/SCU_width; topRow++)
{
if((xCtb+topRow)*SCU_width >= srcWidth || pic->CU[0][xCtb+topRow+(yCtb-1)*width_in_SCU].type == CU_NOTSET)
{
break;
}
}
for(i = 0; i < topRow*SCU_width-1; i ++)
{
dst[i+1] = srcShifted[i-srcWidth];
}
if(topRow != outwidth/SCU_width)
{
val = srcShifted[(topRow*SCU_width)-srcWidth-1];
for(i = (topRow*SCU_width); i < outwidth; i++)
{
dst[i] = val;
}
}
}
else
{
val = xCtb?srcShifted[-1]:dcVal;
for(i = 1; i < outwidth; i++)
{
dst[i] = val;
}
}
/* Topleft corner */
dst[0] = (xCtb&&yCtb)?srcShifted[-srcWidth-1]:dst[dststride];
}
void search_tree(encoder_control* encoder,uint16_t xCtb,uint16_t yCtb, uint8_t depth)
{
uint8_t border_x = ((encoder->in.width)<( xCtb*(LCU_WIDTH>>MAX_DEPTH) + (LCU_WIDTH>>depth) ))?1:0;
uint8_t border_y = ((encoder->in.height)<( yCtb*(LCU_WIDTH>>MAX_DEPTH) + (LCU_WIDTH>>depth) ))?1:0;
uint8_t border_split_x = ((encoder->in.width) < ( (xCtb+1)*(LCU_WIDTH>>MAX_DEPTH) + (LCU_WIDTH>>(depth+1)) ))?0:1;
uint8_t border_split_y = ((encoder->in.height) < ( (yCtb+1)*(LCU_WIDTH>>MAX_DEPTH) + (LCU_WIDTH>>(depth+1)) ))?0:1;
uint8_t border = border_x | border_y; /*!< are we in any border CU */
CU_info *cur_CU = &encoder->in.cur_pic->CU[depth][xCtb+yCtb*(encoder->in.width_in_LCU<<MAX_DEPTH)];
cur_CU->intra.cost = 0xffffffff;
cur_CU->inter.cost = 0xffffffff;
/* Force split on border */
if(depth != MAX_DEPTH)
{
if(border)
{
/* Split blocks and remember to change x and y block positions */
uint8_t change = 1<<(MAX_DEPTH-1-depth);
SET_SPLITDATA(cur_CU,1);
search_tree(encoder,xCtb,yCtb,depth+1);
if(!border_x || border_split_x)
{
search_tree(encoder,xCtb+change,yCtb,depth+1);
}
if(!border_y || border_split_y)
{
search_tree(encoder,xCtb,yCtb+change,depth+1);
}
if(!border || (border_split_x && border_split_y) )
{
search_tree(encoder,xCtb+change,yCtb+change,depth+1);
}
/* We don't need to do anything else here */
return;
}
}
cur_CU->inter.cost = 0;
/* INTER SEARCH */
if(encoder->in.cur_pic->slicetype != SLICE_I)// && (xCtb == 0) && yCtb == 0)
{
//if(depth >= MIN_SEARCH_DEPTH)
{
/* Motion estimation on P-frame */
if(encoder->in.cur_pic->slicetype != SLICE_B)
{
}
2013-04-24 13:49:47 +00:00
{
unsigned mv[2] = { 0, 0 }; // TODO: Take initial MV from adjacent blocks.
picture *cur_pic = encoder->in.cur_pic;
uint8_t *cur_data = &cur_pic->yData[(mv[1] * cur_pic->width) + mv[0]];
picture *ref_pic = encoder->ref->pics[0];
search_motion_vector(cur_pic, cur_data, ref_pic->yData, cur_CU, cur_pic->width >> 1, mv[0], mv[1]);
}
cur_CU->type = CU_INTER;
cur_CU->inter.mv_dir = 1;
inter_setBlockMode(encoder->in.cur_pic,xCtb,yCtb,depth,cur_CU);
}
2013-04-24 13:49:47 +00:00
return;
}
/* INTRA SEARCH */
if(depth >= MIN_SEARCH_DEPTH)
{
int x = 0,y = 0;
uint8_t *base = &encoder->in.cur_pic->yData[xCtb*(LCU_WIDTH>>(MAX_DEPTH)) + (yCtb*(LCU_WIDTH>>(MAX_DEPTH))) *encoder->in.width];
uint32_t width = LCU_WIDTH>>depth;
/* INTRAPREDICTION */
2013-05-22 14:27:15 +00:00
int16_t pred[LCU_WIDTH*LCU_WIDTH+1];
int16_t rec[(LCU_WIDTH*2+8)*(LCU_WIDTH*2+8)];
2013-08-02 13:35:30 +00:00
int16_t *recShift = &rec[(LCU_WIDTH>>(depth))*2+8+1];
2013-05-22 14:27:15 +00:00
//int16_t *pred = (int16_t*)malloc(LCU_WIDTH*LCU_WIDTH*sizeof(int16_t));
//int16_t *rec = (int16_t*)malloc((LCU_WIDTH*2+8)*(LCU_WIDTH*2+8)*sizeof(int16_t));
/* Build reconstructed block to use in prediction with extrapolated borders */
search_buildReferenceBorder(encoder->in.cur_pic, xCtb, yCtb,(LCU_WIDTH>>(depth))*2+8, rec, (LCU_WIDTH>>(depth))*2+8, 0);
cur_CU->intra.mode = (uint8_t)intra_prediction(encoder->in.cur_pic->yData,encoder->in.width,recShift,(LCU_WIDTH>>(depth))*2+8,xCtb*(LCU_WIDTH>>(MAX_DEPTH)),yCtb*(LCU_WIDTH>>(MAX_DEPTH)),width,pred,width,&cur_CU->intra.cost);
2013-05-22 14:27:15 +00:00
//free(pred);
//free(rec);
}
/* Split and search to max_depth */
if(depth != MAX_SEARCH_DEPTH)
{
/* Split blocks and remember to change x and y block positions */
uint8_t change = 1<<(MAX_DEPTH-1-depth);
search_tree(encoder,xCtb,yCtb,depth+1);
search_tree(encoder,xCtb+change,yCtb,depth+1);
search_tree(encoder,xCtb,yCtb+change,depth+1);
search_tree(encoder,xCtb+change,yCtb+change,depth+1);
}
}
uint32_t search_best_mode(encoder_control* encoder,uint16_t xCtb,uint16_t yCtb, uint8_t depth)
{
CU_info *cur_CU = &encoder->in.cur_pic->CU[depth][xCtb+yCtb*(encoder->in.width_in_LCU<<MAX_DEPTH)];
uint32_t bestIntraCost = cur_CU->intra.cost;
uint32_t bestInterCost = cur_CU->inter.cost;
uint32_t bestCost = 0;
uint32_t cost = 0;
uint32_t lambdaCost = (4 * g_lambda_cost[encoder->QP]) << 4; //<<5; //TODO: Correct cost calculation
/* Split and search to max_depth */
if (depth != MAX_SEARCH_DEPTH) {
/* Split blocks and remember to change x and y block positions */
uint8_t change = 1<<(MAX_DEPTH-1-depth);
cost = search_best_mode(encoder,xCtb,yCtb,depth+1);
cost += search_best_mode(encoder,xCtb+change,yCtb,depth+1);
cost += search_best_mode(encoder,xCtb,yCtb+change,depth+1);
cost += search_best_mode(encoder,xCtb+change,yCtb+change,depth+1);
/* We split if the cost is better (0 cost -> not checked) */
if(cost != 0 && (bestIntraCost != 0 && cost+lambdaCost < bestIntraCost) &&
(bestInterCost != 0 && cost+lambdaCost < bestInterCost && encoder->in.cur_pic->slicetype != SLICE_I))
{
/* Set split to 1 */
picture_setBlockSplit(encoder->in.cur_pic,xCtb,yCtb,depth,1);
bestCost = cost+lambdaCost;
}
/* Else, check if inter cost is smaller or the same as intra */
else if(bestInterCost != 0 && (bestInterCost <= bestIntraCost || bestIntraCost == 0) && encoder->in.cur_pic->slicetype != SLICE_I)
{
/* Set split to 0 and mode to inter.mode */
picture_setBlockSplit(encoder->in.cur_pic,xCtb,yCtb,depth,0);
inter_setBlockMode(encoder->in.cur_pic,xCtb,yCtb,depth,cur_CU);
bestCost = bestInterCost;
}
/* Else, dont split and recursively set block mode */
else
{
/* Set split to 0 and mode to intra.mode */
picture_setBlockSplit(encoder->in.cur_pic,xCtb,yCtb,depth,0);
intra_setBlockMode(encoder->in.cur_pic,xCtb,yCtb,depth,cur_CU->intra.mode);
bestCost = bestIntraCost;
}
}
else if(bestInterCost != 0 && (bestInterCost <= bestIntraCost || bestIntraCost == 0) && encoder->in.cur_pic->slicetype != SLICE_I)
{
/* Set split to 0 and mode to inter.mode */
picture_setBlockSplit(encoder->in.cur_pic,xCtb,yCtb,depth,0);
inter_setBlockMode(encoder->in.cur_pic,xCtb,yCtb,depth,cur_CU);
bestCost = bestInterCost;
}
else
{
/* Set split to 0 and mode to intra.mode */
picture_setBlockSplit(encoder->in.cur_pic,xCtb,yCtb,depth,0);
intra_setBlockMode(encoder->in.cur_pic,xCtb,yCtb,depth,cur_CU->intra.mode);
bestCost = bestIntraCost;
}
return bestCost;
}
void search_slice_data(encoder_control* encoder)
{
int16_t xCtb,yCtb;
/* Loop through every LCU in the slice */
for(yCtb = 0; yCtb < encoder->in.height_in_LCU; yCtb++)
{
for(xCtb = 0; xCtb < encoder->in.width_in_LCU; xCtb++)
{
uint8_t depth = 0;
/* Recursive function for looping through all the sub-blocks */
search_tree(encoder, xCtb<<MAX_DEPTH,yCtb<<MAX_DEPTH, depth);
/* Decide actual coding modes */
search_best_mode(encoder, xCtb<<MAX_DEPTH,yCtb<<MAX_DEPTH, depth);
}
}
}