uvg266/src/search.c

277 lines
8.4 KiB
C
Raw Normal View History

/**
* HEVC Encoder
* - Marko Viitanen ( fador at iki.fi ), Tampere University of Technology, Department of Pervasive Computing.
*/
/*! \file search.c
\brief searching
\author Marko Viitanen
\date 2013-04
Search related functions
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "global.h"
#include "config.h"
#include "bitstream.h"
#include "picture.h"
#include "intra.h"
#include "encoder.h"
#include "filter.h"
#include "search.h"
void search_buildReferenceBorder(picture* pic, int32_t xCtb, int32_t yCtb,int16_t outwidth, int16_t* dst, int32_t dststride, int8_t chroma)
{
int32_t leftColumn; /*!< left column iterator */
int16_t val; /*!< variable to store extrapolated value */
int32_t i; /*!< index iterator */
int16_t dcVal = 1<<(g_bitDepth-1); /*!< default predictor value */
int32_t topRow; /*!< top row iterator */
int32_t srcWidth = (pic->width>>(chroma?1:0)); /*!< source picture width */
int32_t srcHeight = (pic->height>>(chroma?1:0));/*!< source picture height */
uint8_t* srcPic = (!chroma)?pic->yData: ((chroma==1)?pic->uData: pic->vData); /*!< input picture pointer */
int16_t SCU_width = LCU_WIDTH>>(MAX_DEPTH+(chroma?1:0)); /*!< Smallest Coding Unit width */
uint8_t* srcShifted = &srcPic[xCtb*SCU_width+(yCtb*SCU_width)*srcWidth]; /*!< input picture pointer shifted to start from the left-top corner of the current block */
int32_t width_in_SCU = srcWidth/SCU_width; /*!< picture width in SCU */
/* Fill left column */
if(xCtb)
{
/* Loop SCU's */
for(leftColumn = 1; leftColumn < outwidth/SCU_width; leftColumn++)
{
/* If over the picture height or block not yet coded, stop */
if((yCtb+leftColumn)*SCU_width >= srcHeight || pic->CU[0][xCtb-1+(yCtb+leftColumn)*width_in_SCU].type == CU_NOTSET)
{
break;
}
}
/* Copy the pixels to output */
for(i = 0; i < leftColumn*SCU_width-1; i ++)
{
dst[(i+1)*dststride] = srcShifted[i*srcWidth-1];
}
/* if the loop was not completed, extrapolate the last pixel pushed to output */
if(leftColumn != outwidth/SCU_width)
{
val = srcShifted[(leftColumn*SCU_width-1)*srcWidth-1];
for(i = (leftColumn*SCU_width); i < outwidth; i++)
{
dst[i*dststride] = val;
}
}
}
/* If left column not available, copy from toprow or use the default predictor */
else
{
val = yCtb?srcShifted[-srcWidth]:dcVal;
for(i = 0; i < outwidth; i++)
{
dst[i*dststride] = val;
}
}
if(yCtb)
{
/* Loop top SCU's */
for(topRow = 1; topRow < outwidth/SCU_width; topRow++)
{
if((xCtb+topRow)*SCU_width >= srcWidth || pic->CU[0][xCtb+topRow+(yCtb-1)*width_in_SCU].type == CU_NOTSET)
{
break;
}
}
for(i = 0; i < topRow*SCU_width-1; i ++)
{
dst[i+1] = srcShifted[i-srcWidth];
}
if(topRow != outwidth/SCU_width)
{
val = srcShifted[(topRow*SCU_width)-srcWidth-1];
for(i = (topRow*SCU_width); i < outwidth; i++)
{
dst[i] = val;
}
}
}
else
{
val = xCtb?srcShifted[-1]:dcVal;
for(i = 1; i < outwidth; i++)
{
dst[i] = val;
}
}
/* Topleft corner */
dst[0] = (xCtb&&yCtb)?srcShifted[-srcWidth-1]:dst[dststride];
}
void search_tree(encoder_control* encoder,uint16_t xCtb,uint16_t yCtb, uint8_t depth)
{
uint8_t border_x = ((encoder->in.width)<( xCtb*(LCU_WIDTH>>MAX_DEPTH) + (LCU_WIDTH>>depth) ))?1:0;
uint8_t border_y = ((encoder->in.height)<( yCtb*(LCU_WIDTH>>MAX_DEPTH) + (LCU_WIDTH>>depth) ))?1:0;
uint8_t border = border_x | border_y; /*!< are we in any border CU */
CU_info *cur_CU = &encoder->in.cur_pic.CU[depth][xCtb+yCtb*(encoder->in.width_in_LCU<<MAX_DEPTH)];
cur_CU->intra.cost = 0xffffffff;
cur_CU->inter.cost = 0xffffffff;
/* Force split on border */
if(depth != MAX_DEPTH)
{
if(border)
{
/* Split blocks and remember to change x and y block positions */
uint8_t change = 1<<(MAX_DEPTH-1-depth);
SET_SPLITDATA(cur_CU,1);
search_tree(encoder,xCtb,yCtb,depth+1);
if(!border_x)
{
search_tree(encoder,xCtb+change,yCtb,depth+1);
}
if(!border_y)
{
search_tree(encoder,xCtb,yCtb+change,depth+1);
}
if(!border)
{
search_tree(encoder,xCtb+change,yCtb+change,depth+1);
}
/* We don't need to do anything else here */
return;
}
}
if(encoder->in.cur_pic.slicetype != SLICE_I)
{
}
/* INTRA SEARCH */
if(depth >= MIN_SEARCH_DEPTH)
{
int x = 0,y = 0;
uint8_t *base = &encoder->in.cur_pic.yData[xCtb*(LCU_WIDTH>>(MAX_DEPTH)) + (yCtb*(LCU_WIDTH>>(MAX_DEPTH))) *encoder->in.width];
uint32_t width = LCU_WIDTH>>depth;
/* INTRAPREDICTION */
/* ToDo: split to a function */
int16_t pred[LCU_WIDTH*LCU_WIDTH];
int16_t rec[(LCU_WIDTH*2+8)*(LCU_WIDTH*2+8)];
int16_t *recShift = &rec[(LCU_WIDTH>>(depth))*2+8+1];
/* Use original pic as reference border for prediction */
/*
if(yCtb)
{
for(x = 0; x < LCU_WIDTH*2 && x < encoder->in.width-xCtb*(LCU_WIDTH>>(MAX_DEPTH)); x++)
{
rec[x] = base[x-((LCU_WIDTH>>(depth))*2+8)];
}
}
for(;x < LCU_WIDTH*2; x++)
{
rec[x] = 1<<(g_bitDepth-1);
}
if(xCtb)
{
for(y = 0; y < LCU_WIDTH*2 && y < encoder->in.height-yCtb*(LCU_WIDTH>>(MAX_DEPTH)); y++)
{
rec[y*((LCU_WIDTH>>(depth))*2+8)] = base[y*encoder->in.width-1];
}
}
for(;y < LCU_WIDTH*2; y++)
{
rec[y*((LCU_WIDTH>>(depth))*2+8)] = 1<<(g_bitDepth-1);
}
*/
/* Build reconstructed block to use in prediction with extrapolated borders */
search_buildReferenceBorder(&encoder->in.cur_pic, xCtb, yCtb,(LCU_WIDTH>>(depth))*2+8, rec, (LCU_WIDTH>>(depth))*2+8, 0);
cur_CU->intra.mode = (uint8_t)intra_prediction(encoder->in.cur_pic.yData,encoder->in.width,recShift,(LCU_WIDTH>>(depth))*2+8,xCtb*(LCU_WIDTH>>(MAX_DEPTH)),yCtb*(LCU_WIDTH>>(MAX_DEPTH)),width,pred,width,&cur_CU->intra.cost);
}
/* Split and search to max_depth */
if(depth != MAX_SEARCH_DEPTH)
{
/* Split blocks and remember to change x and y block positions */
uint8_t change = 1<<(MAX_DEPTH-1-depth);
search_tree(encoder,xCtb,yCtb,depth+1);
search_tree(encoder,xCtb+change,yCtb,depth+1);
search_tree(encoder,xCtb,yCtb+change,depth+1);
search_tree(encoder,xCtb+change,yCtb+change,depth+1);
}
}
uint32_t search_best_mode(encoder_control* encoder,uint16_t xCtb,uint16_t yCtb, uint8_t depth)
{
CU_info *cur_CU = &encoder->in.cur_pic.CU[depth][xCtb+yCtb*(encoder->in.width_in_LCU<<MAX_DEPTH)];
uint32_t bestCost = cur_CU->intra.cost;
uint32_t cost = 0;
uint32_t lambdaCost = 4*g_lambda_cost[encoder->QP]<<5;
/* Split and search to max_depth */
if(depth != MAX_SEARCH_DEPTH)
{
/* Split blocks and remember to change x and y block positions */
uint8_t change = 1<<(MAX_DEPTH-1-depth);
cost = search_best_mode(encoder,xCtb,yCtb,depth+1);
cost += search_best_mode(encoder,xCtb+change,yCtb,depth+1);
cost += search_best_mode(encoder,xCtb,yCtb+change,depth+1);
cost += search_best_mode(encoder,xCtb+change,yCtb+change,depth+1);
/* We split if the cost is better */
if(cost != 0 && cost+lambdaCost < bestCost)
{
picture_setBlockSplit(&encoder->in.cur_pic,xCtb,yCtb,depth,1);
bestCost = cost+lambdaCost;
}
/* Else, dont split and recursively set block mode */
else
{
//cur_CU->split = 0;
picture_setBlockSplit(&encoder->in.cur_pic,xCtb,yCtb,depth,0);
intra_setBlockMode(&encoder->in.cur_pic,xCtb,yCtb,depth,cur_CU->intra.mode);
}
}
else
{
picture_setBlockSplit(&encoder->in.cur_pic,xCtb,yCtb,depth,0);
intra_setBlockMode(&encoder->in.cur_pic,xCtb,yCtb,depth,cur_CU->intra.mode);
}
return bestCost;
}
void search_slice_data(encoder_control* encoder)
{
uint16_t xCtb,yCtb;
/* Loop through every LCU in the slice */
for(yCtb = 0; yCtb < encoder->in.height_in_LCU; yCtb++)
{
uint8_t lastCUy = (yCtb == (encoder->in.height_in_LCU-1))?1:0;
for(xCtb = 0; xCtb < encoder->in.width_in_LCU; xCtb++)
{
uint8_t lastCUx = (xCtb == (encoder->in.width_in_LCU-1))?1:0;
uint8_t depth = 0;
/* Recursive function for looping through all the sub-blocks */
search_tree(encoder, xCtb<<MAX_DEPTH,yCtb<<MAX_DEPTH, depth);
/* Decide actual coding modes */
search_best_mode(encoder, xCtb<<MAX_DEPTH,yCtb<<MAX_DEPTH, depth);
}
}
}