uvg266/src/strategies/avx2/sao-avx2.c

599 lines
23 KiB
C
Raw Normal View History

/*****************************************************************************
* This file is part of Kvazaar HEVC encoder.
*
* Copyright (C) 2013-2015 Tampere University of Technology and others (see
* COPYING file).
*
* Kvazaar is free software: you can redistribute it and/or modify it under
* the terms of the GNU Lesser General Public License as published by the
* Free Software Foundation; either version 2.1 of the License, or (at your
* option) any later version.
*
* Kvazaar is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with Kvazaar. If not, see <http://www.gnu.org/licenses/>.
****************************************************************************/
#include "strategies/avx2/sao-avx2.h"
#if COMPILE_INTEL_AVX2
#include <immintrin.h>
#include "cu.h"
#include "encoder.h"
#include "encoderstate.h"
#include "kvazaar.h"
#include "sao.h"
#include "strategyselector.h"
2016-03-16 17:36:47 +00:00
// These optimizations are based heavily on sao-generic.c.
// Might be useful to check that if (when) this file
// is difficult to understand.
// Mapping of edge_idx values to eo-classes.
static int sao_calc_eo_cat(kvz_pixel a, kvz_pixel b, kvz_pixel c)
2017-07-11 07:02:01 +00:00
{
// Mapping relationships between a, b and c to eo_idx.
static const int sao_eo_idx_to_eo_category[] = { 1, 2, 0, 3, 4 };
int eo_idx = 2 + SIGN3((int)c - (int)a) + SIGN3((int)c - (int)b);
//printf("%d ", SIGN3((int)c - (int)a));
return sao_eo_idx_to_eo_category[eo_idx];
2016-03-16 17:42:56 +00:00
}
static int sao_calc_eo_cat_test(kvz_pixel a, kvz_pixel b, kvz_pixel c)
{
// Mapping relationships between a, b and c to eo_idx.
static const int sao_eo_idx_to_eo_category[] = { 1, 2, 0, 3, 4 };
int eo_idx = 2 + SIGN3((int)c - (int)a) + SIGN3((int)c - (int)b);
//printf("%d ", sao_eo_idx_to_eo_category[eo_idx]);
return sao_eo_idx_to_eo_category[eo_idx];
2016-03-16 17:42:56 +00:00
}
// Mapping of edge_idx values to eo-classes.
static __m256i sao_calc_eo_cat_avx2(__m128i vector_a_epi8, __m128i vector_b_epi8, __m128i vector_c_epi8)
2018-08-21 12:54:56 +00:00
{
// Mapping relationships between a, b and c to eo_idx.
__m256i vector_sao_eo_idx_to_eo_category_epi32 = _mm256_setr_epi32(1, 2, 0, 3, 4, 0, 0, 0);
2018-08-21 12:54:56 +00:00
__m256i eo_idx_epi32 = _mm256_set1_epi32(2);
__m256i vector_a_epi32 = _mm256_cvtepu8_epi32(vector_a_epi8);
__m256i vector_b_epi32 = _mm256_cvtepu8_epi32(vector_b_epi8);
__m256i vector_c_epi32 = _mm256_cvtepu8_epi32(vector_c_epi8);
2018-08-21 12:54:56 +00:00
__m256i temp1_epi32 = _mm256_sign_epi32(_mm256_set1_epi32(1), _mm256_sub_epi32(vector_c_epi32, vector_a_epi32));
__m256i temp2_epi32 = _mm256_sign_epi32(_mm256_set1_epi32(1), _mm256_sub_epi32(vector_c_epi32, vector_b_epi32));
2018-08-21 12:54:56 +00:00
eo_idx_epi32 = _mm256_add_epi32(eo_idx_epi32, temp1_epi32);
eo_idx_epi32 = _mm256_add_epi32(eo_idx_epi32, temp2_epi32);
2018-08-21 12:54:56 +00:00
__m256i v_cat_epi32 = _mm256_permutevar8x32_epi32(vector_sao_eo_idx_to_eo_category_epi32, eo_idx_epi32);
return v_cat_epi32;
2018-08-21 12:54:56 +00:00
}
// Mapping of edge_idx values to eo-classes.
static __m256i sao_calc_eo_cat_6_pixels_avx2(__m128i vector_a_epi8, __m128i vector_b_epi8, __m128i vector_c_epi8)
2016-03-16 17:36:47 +00:00
{
// Mapping relationships between a, b and c to eo_idx.
__m256i vector_sao_eo_idx_to_eo_category_epi32 = _mm256_setr_epi32(1, 2, 0, 3, 4, 0, 0, 0);
__m256i use_only_six = _mm256_setr_epi32(-1, -1, -1, -1, -1, -1, 0, 0);
2018-08-21 12:54:56 +00:00
__m256i eo_idx_epi32 = _mm256_set1_epi32(2);
__m256i vector_a_epi32 = _mm256_cvtepu8_epi32(vector_a_epi8);
__m256i vector_b_epi32 = _mm256_cvtepu8_epi32(vector_b_epi8);
__m256i vector_c_epi32 = _mm256_cvtepu8_epi32(vector_c_epi8);
2018-08-21 12:54:56 +00:00
__m256i temp1_epi32 = _mm256_sign_epi32(_mm256_set1_epi32(1), _mm256_sub_epi32(vector_c_epi32, vector_a_epi32));
__m256i temp2_epi32 = _mm256_sign_epi32(_mm256_set1_epi32(1), _mm256_sub_epi32(vector_c_epi32, vector_b_epi32));
2018-08-21 12:54:56 +00:00
eo_idx_epi32 = _mm256_add_epi32(eo_idx_epi32, temp1_epi32);
eo_idx_epi32 = _mm256_add_epi32(eo_idx_epi32, temp2_epi32);
2016-03-16 17:36:47 +00:00
__m256i v_cat_epi32 = _mm256_permutevar8x32_epi32(vector_sao_eo_idx_to_eo_category_epi32, eo_idx_epi32);
v_cat_epi32 = _mm256_and_si256(v_cat_epi32, use_only_six);
return v_cat_epi32;
2016-03-16 17:36:47 +00:00
}
2017-07-11 07:02:01 +00:00
static int sao_edge_ddistortion_avx2(const kvz_pixel *orig_data,
const kvz_pixel *rec_data,
int block_width,
int block_height,
int eo_class,
int offsets[NUM_SAO_EDGE_CATEGORIES])
2018-08-21 12:54:56 +00:00
{
int y, x;
int sum = 0;
vector2d_t a_ofs = g_sao_edge_offsets[eo_class][0];
vector2d_t b_ofs = g_sao_edge_offsets[eo_class][1];
2018-08-21 12:54:56 +00:00
__m256i offsets_epi32 = _mm256_setr_epi32(offsets[0], offsets[1], offsets[2], offsets[3], offsets[4], 0, 0, 0);
__m256i tmp_diff_epi32;
__m256i tmp_sum_epi32 = _mm256_setzero_si256();
__m256i tmp_offset_epi32;
__m256i tmp1_vec_epi32;
__m256i tmp2_vec_epi32;
__m256i zeros_epi32 = _mm256_setzero_si256();
__m256i offset_zeros_epi32;
for (y = 1; y < block_height - 1; ++y) {
for (x = 1; x < block_width - 8; x+=8) {
const kvz_pixel *c_data = &rec_data[y * block_width + x];
kvz_pixel c = c_data[0];
__m128i vector_a_epi8 = _mm_loadl_epi64((__m128i*)&c_data[a_ofs.y * block_width + a_ofs.x]);
__m128i vector_c_epi8 = _mm_loadl_epi64((__m128i*)&c_data[0]);
__m128i vector_b_epi8 = _mm_loadl_epi64((__m128i*)&c_data[b_ofs.y * block_width + b_ofs.x]);
2018-08-21 12:54:56 +00:00
__m256i v_cat_epi32 = sao_calc_eo_cat_avx2(vector_a_epi8, vector_b_epi8, vector_c_epi8);
2018-08-21 12:54:56 +00:00
tmp_diff_epi32 = _mm256_load_si256((__m256i*)&orig_data[y * block_width + x] - c);
tmp_offset_epi32 = _mm256_permutevar8x32_epi32(offsets_epi32, v_cat_epi32);
offset_zeros_epi32 = _mm256_cmpeq_epi32(zeros_epi32, tmp_offset_epi32);
// (diff - offset) * (diff - offset)
tmp1_vec_epi32 = _mm256_mul_epi32(_mm256_sub_epi32(tmp_diff_epi32, tmp_offset_epi32), _mm256_sub_epi32(tmp_diff_epi32, tmp_offset_epi32));
// diff * diff
tmp2_vec_epi32 = _mm256_mul_epi32(tmp_diff_epi32, tmp_diff_epi32);
// Offset is applied to reconstruction, so it is subtracted from diff.
// sum += (diff - offset) * (diff - offset) - diff * diff;
tmp_sum_epi32 = _mm256_add_epi32(tmp_sum_epi32, _mm256_andnot_si256(offset_zeros_epi32, _mm256_sub_epi32(tmp1_vec_epi32, tmp2_vec_epi32)));
}
// Load the last 6 pixels to use
2016-03-16 17:42:56 +00:00
const kvz_pixel *c_data = &rec_data[y * block_width + x];
const kvz_pixel *c_data2 = &rec_data[y * block_width + x +2];
const kvz_pixel *c_data4 = &rec_data[y * block_width + x + 4];
kvz_pixel c = c_data[0];
2018-08-21 12:54:56 +00:00
__m128i vector_a_epi8 = _mm_setr_epi16(c_data[a_ofs.y * block_width + a_ofs.x], c_data2[a_ofs.y * block_width + a_ofs.x], c_data4[a_ofs.y * block_width + a_ofs.x], 0, 0, 0, 0, 0);
__m128i vector_c_epi8 = _mm_setr_epi16(c_data[0], c_data2[0], c_data4[0], 0, 0, 0, 0, 0);
__m128i vector_b_epi8 = _mm_setr_epi16(c_data[b_ofs.y * block_width + b_ofs.x], c_data2[b_ofs.y * block_width + b_ofs.x], c_data4[b_ofs.y * block_width + b_ofs.x], 0, 0, 0, 0, 0);
2016-03-16 17:44:28 +00:00
__m256i v_cat_epi32 = sao_calc_eo_cat_6_pixels_avx2(vector_a_epi8, vector_b_epi8, vector_c_epi8);
tmp_diff_epi32 = _mm256_setr_epi32(orig_data[y * block_width + x] - c, orig_data[y * block_width + x + 1] - c, orig_data[y * block_width + x + 2] - c, orig_data[y * block_width + x + 3] - c, orig_data[y * block_width + x + 3] - c, orig_data[y * block_width + x + 4] - c, 0, 0);
2016-03-16 17:44:28 +00:00
tmp_offset_epi32 = _mm256_permutevar8x32_epi32(offsets_epi32, v_cat_epi32);
2016-03-16 17:44:28 +00:00
offset_zeros_epi32 = _mm256_cmpeq_epi32(zeros_epi32, tmp_offset_epi32);
2016-03-16 17:44:28 +00:00
// (diff - offset) * (diff - offset)
tmp1_vec_epi32 = _mm256_mul_epi32(_mm256_sub_epi32(tmp_diff_epi32, tmp_offset_epi32), _mm256_sub_epi32(tmp_diff_epi32, tmp_offset_epi32));
2018-08-31 13:59:49 +00:00
// diff * diff
tmp2_vec_epi32 = _mm256_mul_epi32(tmp_diff_epi32, tmp_diff_epi32);
2018-08-31 13:59:49 +00:00
// Offset is applied to reconstruction, so it is subtracted from diff.
// sum += (diff - offset) * (diff - offset) - diff * diff;
2018-08-31 13:59:49 +00:00
tmp_sum_epi32 = _mm256_add_epi32(tmp_sum_epi32, _mm256_andnot_si256(offset_zeros_epi32, _mm256_sub_epi32(tmp1_vec_epi32, tmp2_vec_epi32)));
2018-08-31 13:59:49 +00:00
tmp_sum_epi32 = _mm256_hadd_epi32(tmp_sum_epi32, tmp_sum_epi32);
tmp_sum_epi32 = _mm256_hadd_epi32(tmp_sum_epi32, tmp_sum_epi32);
int* pointer = (int*)&tmp_sum_epi32;
2018-08-31 13:59:49 +00:00
sum += (pointer[0] + pointer[4]);
}
return sum;
}
2018-08-21 12:54:56 +00:00
/**
* \param orig_data Original pixel data. 64x64 for luma, 32x32 for chroma.
* \param rec_data Reconstructed pixel data. 64x64 for luma, 32x32 for chroma.
* \param dir_offsets
* \param is_chroma 0 for luma, 1 for chroma. Indicates
*/
2018-08-23 13:21:55 +00:00
static void calc_sao_edge_dir_avx2(const kvz_pixel *orig_data,
2018-08-21 12:54:56 +00:00
const kvz_pixel *rec_data,
int eo_class,
int block_width,
int block_height,
int cat_sum_cnt[2][NUM_SAO_EDGE_CATEGORIES])
{
int y, x;
vector2d_t a_ofs = g_sao_edge_offsets[eo_class][0];
vector2d_t b_ofs = g_sao_edge_offsets[eo_class][1];
// Arrays orig_data and rec_data are quarter size for chroma.
// Don't sample the edge pixels because this function doesn't have access to
// their neighbours.
__m256i zeros_epi32 = _mm256_setzero_si256();
__m256i ones_epi32 = _mm256_set1_epi32(1);
__m256i twos_epi32 = _mm256_set1_epi32(2);
__m256i threes_epi32 = _mm256_set1_epi32(3);
__m256i fours_epi32 = _mm256_set1_epi32(4);
__m256i tmp_zero_values_epi32 = _mm256_setzero_si256();
__m256i tmp_one_values_epi32 = _mm256_setzero_si256();
__m256i tmp_two_values_epi32 = _mm256_setzero_si256();
__m256i tmp_three_values_epi32 = _mm256_setzero_si256();
__m256i tmp_four_values_epi32 = _mm256_setzero_si256();
2018-08-21 12:54:56 +00:00
__m256i temp_epi32 = _mm256_setzero_si256();
__m256i temp_mem_epi32 = _mm256_setzero_si256();
for (y = 1; y < block_height - 1; ++y) {
for (x = 1; x < block_width - 8; x += 8) {
2018-08-21 12:54:56 +00:00
const kvz_pixel *c_data = &rec_data[y * block_width + x];
kvz_pixel c = c_data[0];
__m128i vector_a_epi8 = _mm_loadl_epi64((__m128i*)&c_data[a_ofs.y * block_width + a_ofs.x]);
__m128i vector_c_epi8 = _mm_loadl_epi64((__m128i*)&c);
__m128i vector_b_epi8 = _mm_loadl_epi64((__m128i*)&c_data[b_ofs.y * block_width + b_ofs.x]);
__m256i v_cat_epi32 = sao_calc_eo_cat_avx2(vector_a_epi8, vector_b_epi8, vector_c_epi8);
2018-08-21 12:54:56 +00:00
// Check wich values are right for specific cat amount.
// It's done for every single value that cat could get {1, 2, 0, 3, 4}
2018-08-21 12:54:56 +00:00
//--------------------------------------------------------------------------
__m256i mask_epi32 = _mm256_cmpeq_epi32(zeros_epi32, v_cat_epi32);
int temp_cnt = __popcnt(_mm256_movemask_epi8(mask_epi32))/4;
cat_sum_cnt[1][0] += temp_cnt;
temp_mem_epi32 = _mm256_load_si256((__m256i*)&orig_data[y * block_width + x] - c);
temp_epi32 = _mm256_and_si256(mask_epi32, temp_mem_epi32);
tmp_zero_values_epi32 = _mm256_add_epi32(tmp_zero_values_epi32, temp_epi32);
//--------------------------------------------------------------------------
2018-08-21 12:54:56 +00:00
mask_epi32 = _mm256_cmpeq_epi32(ones_epi32, v_cat_epi32);
temp_cnt = __popcnt(_mm256_movemask_epi8(mask_epi32)) / 4;
cat_sum_cnt[1][1] += temp_cnt;
temp_epi32 = _mm256_and_si256(mask_epi32, temp_mem_epi32);
tmp_one_values_epi32 = _mm256_add_epi32(tmp_zero_values_epi32, temp_epi32);
//--------------------------------------------------------------------------
mask_epi32 = _mm256_cmpeq_epi32(twos_epi32, v_cat_epi32);
temp_cnt = __popcnt(_mm256_movemask_epi8(mask_epi32)) / 4;
cat_sum_cnt[1][2] += temp_cnt;
temp_epi32 = _mm256_and_si256(mask_epi32, temp_mem_epi32);
tmp_two_values_epi32 = _mm256_add_epi32(tmp_zero_values_epi32, temp_epi32);
//--------------------------------------------------------------------------
mask_epi32 = _mm256_cmpeq_epi32(threes_epi32, v_cat_epi32);
temp_cnt = __popcnt(_mm256_movemask_epi8(mask_epi32)) / 4;
cat_sum_cnt[1][3] += temp_cnt;
temp_epi32 = _mm256_and_si256(mask_epi32, temp_mem_epi32);
tmp_three_values_epi32 = _mm256_add_epi32(tmp_zero_values_epi32, temp_epi32);
//--------------------------------------------------------------------------
mask_epi32 = _mm256_cmpeq_epi32(fours_epi32, v_cat_epi32);
temp_cnt = __popcnt(_mm256_movemask_epi8(mask_epi32)) / 4;
cat_sum_cnt[1][4] += temp_cnt;
temp_epi32 = _mm256_and_si256(mask_epi32, temp_mem_epi32);
tmp_four_values_epi32 = _mm256_add_epi32(tmp_zero_values_epi32, temp_epi32);
//--------------------------------------------------------------------------
2018-08-21 12:54:56 +00:00
}
temp_epi32 = _mm256_hadd_epi32(tmp_zero_values_epi32, tmp_one_values_epi32);
temp_mem_epi32 = _mm256_hadd_epi32(tmp_two_values_epi32, tmp_three_values_epi32);
temp_epi32 = _mm256_hadd_epi32(temp_epi32, temp_mem_epi32);
int*temp = (int*)&temp_epi32;
cat_sum_cnt[0][0] += (temp[0] + temp[4]);
cat_sum_cnt[0][1] += (temp[1] + temp[5]);
cat_sum_cnt[0][2] += (temp[2] + temp[6]);
cat_sum_cnt[0][3] += (temp[3] + temp[7]);
tmp_four_values_epi32 = _mm256_hadd_epi32(tmp_four_values_epi32, tmp_four_values_epi32);
tmp_four_values_epi32 = _mm256_hadd_epi32(tmp_four_values_epi32, tmp_four_values_epi32);
tmp_four_values_epi32 = _mm256_hadd_epi32(tmp_four_values_epi32, tmp_four_values_epi32);
temp = (int*)&tmp_four_values_epi32;
cat_sum_cnt[0][4] += (temp[0] + temp[4]);
// Load the last 6 pixels to use
2018-08-21 12:54:56 +00:00
2018-08-23 13:21:55 +00:00
const kvz_pixel *c_data = &rec_data[y * block_width + x];
const kvz_pixel *c_data2 = &rec_data[y * block_width + x + 2];
const kvz_pixel *c_data4 = &rec_data[y * block_width + x + 4];
2018-08-23 13:21:55 +00:00
kvz_pixel c = c_data[0];
2018-08-23 13:21:55 +00:00
__m128i vector_a_epi8 = _mm_setr_epi16(c_data[a_ofs.y * block_width + a_ofs.x], c_data2[a_ofs.y * block_width + a_ofs.x], c_data4[a_ofs.y * block_width + a_ofs.x], 0, 0, 0, 0, 0);
__m128i vector_c_epi8 = _mm_setr_epi16(c_data[0], c_data2[0], c_data4[0], 0, 0, 0, 0, 0);
__m128i vector_b_epi8 = _mm_setr_epi16(c_data[b_ofs.y * block_width + b_ofs.x], c_data2[b_ofs.y * block_width + b_ofs.x], c_data4[b_ofs.y * block_width + b_ofs.x], 0, 0, 0, 0, 0);
2018-08-23 13:21:55 +00:00
__m256i v_cat_epi32 = sao_calc_eo_cat_6_pixels_avx2(vector_a_epi8, vector_b_epi8, vector_c_epi8);
2018-08-23 13:21:55 +00:00
__m256i temp_mem_epi32 = _mm256_setr_epi32(orig_data[y * block_width + x] - c, orig_data[y * block_width + x + 1] - c, orig_data[y * block_width + x + 2] - c, orig_data[y * block_width + x + 3] - c, orig_data[y * block_width + x + 3] - c, orig_data[y * block_width + x + 4] - c, 0, 0);
2018-08-31 13:59:49 +00:00
// Check wich values are right for specific cat amount.
// It's done for every single value that cat could get {1, 2, 0, 3, 4}
//--------------------------------------------------------------------------
__m256i mask_epi32 = _mm256_cmpeq_epi32(zeros_epi32, v_cat_epi32);
int temp_cnt = __popcnt(_mm256_movemask_epi8(mask_epi32)) / 4 - 2;
cat_sum_cnt[1][0] += temp_cnt;
temp_epi32 = _mm256_and_si256(mask_epi32, temp_mem_epi32);
tmp_zero_values_epi32 = _mm256_add_epi32(tmp_zero_values_epi32, temp_epi32);
//--------------------------------------------------------------------------
2018-08-31 13:59:49 +00:00
mask_epi32 = _mm256_cmpeq_epi32(ones_epi32, v_cat_epi32);
temp_cnt = __popcnt(_mm256_movemask_epi8(mask_epi32)) / 4;
cat_sum_cnt[1][1] += temp_cnt;
temp_epi32 = _mm256_and_si256(mask_epi32, temp_mem_epi32);
tmp_one_values_epi32 = _mm256_add_epi32(tmp_zero_values_epi32, temp_epi32);
//--------------------------------------------------------------------------
2018-08-23 13:21:55 +00:00
mask_epi32 = _mm256_cmpeq_epi32(twos_epi32, v_cat_epi32);
temp_cnt = __popcnt(_mm256_movemask_epi8(mask_epi32)) / 4;
cat_sum_cnt[1][2] += temp_cnt;
temp_epi32 = _mm256_and_si256(mask_epi32, temp_mem_epi32);
tmp_two_values_epi32 = _mm256_add_epi32(tmp_zero_values_epi32, temp_epi32);
//--------------------------------------------------------------------------
2018-08-21 12:54:56 +00:00
mask_epi32 = _mm256_cmpeq_epi32(threes_epi32, v_cat_epi32);
temp_cnt = __popcnt(_mm256_movemask_epi8(mask_epi32)) / 4;
cat_sum_cnt[1][3] += temp_cnt;
temp_epi32 = _mm256_and_si256(mask_epi32, temp_mem_epi32);
tmp_three_values_epi32 = _mm256_add_epi32(tmp_zero_values_epi32, temp_epi32);
//--------------------------------------------------------------------------
2018-08-21 12:54:56 +00:00
mask_epi32 = _mm256_cmpeq_epi32(fours_epi32, v_cat_epi32);
temp_cnt = __popcnt(_mm256_movemask_epi8(mask_epi32)) / 4;
cat_sum_cnt[1][4] += temp_cnt;
temp_epi32 = _mm256_and_si256(mask_epi32, temp_mem_epi32);
tmp_four_values_epi32 = _mm256_add_epi32(tmp_zero_values_epi32, temp_epi32);
//--------------------------------------------------------------------------
2018-08-21 12:54:56 +00:00
temp_epi32 = _mm256_hadd_epi32(tmp_zero_values_epi32, tmp_one_values_epi32);
2018-08-21 12:54:56 +00:00
int*remove = (int*)&temp_epi32;
2018-08-21 12:54:56 +00:00
temp_mem_epi32 = _mm256_hadd_epi32(tmp_two_values_epi32, tmp_three_values_epi32);
2018-08-21 12:54:56 +00:00
temp_mem_epi32 = _mm256_hadd_epi32(temp_epi32, temp_mem_epi32);
2018-08-21 12:54:56 +00:00
temp = (int*)&temp_mem_epi32;
2018-08-21 12:54:56 +00:00
cat_sum_cnt[0][0] += (temp[0] + temp[4] - remove[5]);
cat_sum_cnt[0][1] += (temp[1] + temp[5]);
cat_sum_cnt[0][2] += (temp[2] + temp[6]);
cat_sum_cnt[0][3] += (temp[3] + temp[7]);
tmp_four_values_epi32 = _mm256_hadd_epi32(tmp_four_values_epi32, tmp_four_values_epi32);
tmp_four_values_epi32 = _mm256_hadd_epi32(tmp_four_values_epi32, tmp_four_values_epi32);
tmp_four_values_epi32 = _mm256_hadd_epi32(tmp_four_values_epi32, tmp_four_values_epi32);
2016-03-16 17:44:28 +00:00
temp = (int*)&tmp_four_values_epi32;
cat_sum_cnt[0][4] += (temp[0] + temp[4]);
}
}
2018-08-31 13:59:49 +00:00
static void sao_reconstruct_color_avx(const encoder_control_t * const encoder,
const kvz_pixel *rec_data,
2018-08-31 13:59:49 +00:00
kvz_pixel *new_rec_data,
const sao_info_t *sao,
int stride,
2018-08-31 13:59:49 +00:00
int new_stride,
int block_width,
2018-08-31 13:59:49 +00:00
int block_height,
color_t color_i)
{
// Arrays orig_data and rec_data are quarter size for chroma.
int offset_v = color_i == COLOR_V ? 5 : 0;
if (sao->type == SAO_TYPE_BAND) {
int offsets[1 << KVZ_BIT_DEPTH];
kvz_calc_sao_offset_array(encoder, sao, offsets, color_i);
for (int y = 0; y < block_height; ++y) {
for (int x = 0; x < block_width; ++x) {
new_rec_data[y * new_stride + x] = offsets[rec_data[y * stride + x]];
}
}
}
else {
// Don't sample the edge pixels because this function doesn't have access to
// their neighbours.
for (int y = 0; y < block_height; ++y) {
for (int x = 0; x < block_width; x += 8) {
for (int i = 0; i < 8; ++i) {
int test = x + i;
vector2d_t a_ofs = g_sao_edge_offsets[sao->eo_class][0];
vector2d_t b_ofs = g_sao_edge_offsets[sao->eo_class][1];
const kvz_pixel *c_data = &rec_data[y * stride + test];
kvz_pixel *new_data = &new_rec_data[y * new_stride + test];
kvz_pixel a = c_data[a_ofs.y * stride + a_ofs.x];
kvz_pixel c = c_data[0];
kvz_pixel b = c_data[b_ofs.y * stride + b_ofs.x];
int eo_cat = sao_calc_eo_cat(a, b, c);
new_data[0] = (kvz_pixel)CLIP(0, (1 << KVZ_BIT_DEPTH) - 1, c_data[0] + sao->offsets[eo_cat + offset_v]);
}
}
}
}
}
static void sao_reconstruct_color_avx2(const encoder_control_t * const encoder,
const kvz_pixel *rec_data,
kvz_pixel *new_rec_data,
const sao_info_t *sao,
int stride,
int new_stride,
int block_width,
int block_height,
color_t color_i)
{
// Arrays orig_data and rec_data are quarter size for chroma.
int offset_v = color_i == COLOR_V ? 5 : 0;
2018-08-31 13:59:49 +00:00
if (sao->type == SAO_TYPE_BAND) {
int offsets[1 << KVZ_BIT_DEPTH];
kvz_calc_sao_offset_array(encoder, sao, offsets, color_i);
for (int y = 0; y < block_height; ++y) {
for (int x = 0; x < block_width; ++x) {
new_rec_data[y * new_stride + x] = offsets[rec_data[y * stride + x]];
2018-08-31 13:59:49 +00:00
}
}
}
else {
2018-08-31 13:59:49 +00:00
// Don't sample the edge pixels because this function doesn't have access to
// their neighbours.
__m256i offset_v_epi32 = _mm256_set1_epi32(offset_v);
vector2d_t a_ofs = g_sao_edge_offsets[sao->eo_class][0];
vector2d_t b_ofs = g_sao_edge_offsets[sao->eo_class][1];
2018-08-31 13:59:49 +00:00
for (int y = 0; y < block_height; ++y) {
int test = 0;
for (int x = 0; x < block_width - 8; x+=8) {
2018-08-31 13:59:49 +00:00
const kvz_pixel *c_data = &rec_data[y * stride + x];
__m128i vector_a_epi8 = _mm_loadl_epi64((__m128i*)&c_data[a_ofs.y * stride + a_ofs.x]);
__m128i vector_c_epi8 = _mm_loadl_epi64((__m128i*)&c_data[0]);
__m128i vector_b_epi8 = _mm_loadl_epi64((__m128i*)&c_data[b_ofs.y * stride + b_ofs.x]);
__m256i v_cat_epi32 = sao_calc_eo_cat_avx2(vector_a_epi8, vector_b_epi8, vector_c_epi8);
v_cat_epi32 = _mm256_add_epi32(v_cat_epi32, offset_v_epi32);
__m256i vector_c_data0_epi32 = _mm256_cvtepu8_epi32(vector_c_epi8);
int*temp = (int*)&v_cat_epi32;
__m256i vector_sao_offsets_epi32 = _mm256_set_epi32(sao->offsets[temp[7]], sao->offsets[temp[6]], sao->offsets[temp[5]], sao->offsets[temp[4]], sao->offsets[temp[3]], sao->offsets[temp[2]], sao->offsets[temp[1]], sao->offsets[temp[0]]);
vector_sao_offsets_epi32 = _mm256_add_epi32(vector_sao_offsets_epi32, vector_c_data0_epi32);
__m256i temp_epi16 = _mm256_packus_epi32(vector_sao_offsets_epi32, vector_sao_offsets_epi32);
__m256i temp_epi8 = _mm256_packus_epi16(temp_epi16, temp_epi16);
2018-08-31 13:59:49 +00:00
int*temp2 = (int*)&vector_sao_offsets_epi32;
for (int i = 0; i < 8; ++i) {
const kvz_pixel *c_data = &rec_data[y * stride + x + i];
kvz_pixel *new_data = &new_rec_data[y * new_stride + x + i];
//printf("%d ", c_data[0] + sao->offsets[temp[i]]);
//printf("%d \n", temp2[i]);
new_data[0] = (kvz_pixel)CLIP(0, (1 << KVZ_BIT_DEPTH) - 1, temp2[i]);//c_data[0] + sao->offsets[temp[i]]);
test = x;
}
//Low = 0
//High = (1 << KVZ_BIT_DEPTH)
//Value = c_data[0] + sao->offsets[eo_cat + offset_v]
//new_data[0] = (kvz_pixel)CLIP(0, (1 << KVZ_BIT_DEPTH) - 1, c_data[0] + sao->offsets[eo_cat + offset_v]);
}
for (int i = 0; i < (block_width - test); ++i) {
const kvz_pixel *c_data = &rec_data[y * stride + test + i];
kvz_pixel *new_data = &new_rec_data[y * new_stride + test + i];
kvz_pixel a = c_data[a_ofs.y * stride + a_ofs.x];
kvz_pixel c = c_data[0];
kvz_pixel b = c_data[b_ofs.y * stride + b_ofs.x];
int eo_cat = sao_calc_eo_cat(a, b, c);
new_data[0] = (kvz_pixel)CLIP(0, (1 << KVZ_BIT_DEPTH) - 1, c_data[0] + sao->offsets[eo_cat + offset_v]);
}
}
}
}
2017-07-11 07:02:01 +00:00
static int sao_band_ddistortion_avx2(const encoder_state_t * const state,
const kvz_pixel *orig_data,
const kvz_pixel *rec_data,
int block_width,
int block_height,
int band_pos,
int sao_bands[4])
{
int y, x;
int shift = state->encoder_control->bitdepth - 5;
int sum = 0;
for (y = 0; y < block_height; ++y) {
for (x = 0; x < block_width; ++x) {
int band = (rec_data[y * block_width + x] >> shift) - band_pos;
int offset = 0;
if (band >= 0 && band < 4) {
offset = sao_bands[band];
}
if (offset != 0) {
int diff = orig_data[y * block_width + x] - rec_data[y * block_width + x];
// Offset is applied to reconstruction, so it is subtracted from diff.
sum += (diff - offset) * (diff - offset) - diff * diff;
}
}
}
return sum;
}
#endif //COMPILE_INTEL_AVX2
int kvz_strategy_register_sao_avx2(void* opaque, uint8_t bitdepth)
{
bool success = true;
#if COMPILE_INTEL_AVX2
if (bitdepth == 8) {
2017-07-11 07:02:01 +00:00
success &= kvz_strategyselector_register(opaque, "sao_edge_ddistortion", "avx2", 40, &sao_edge_ddistortion_avx2);
success &= kvz_strategyselector_register(opaque, "calc_sao_edge_dir", "avx2", 40, &calc_sao_edge_dir_avx2);
success &= kvz_strategyselector_register(opaque, "sao_reconstruct_color", "avx2", 40, &sao_reconstruct_color_avx2);
success &= kvz_strategyselector_register(opaque, "sao_band_ddistortion", "avx2", 40, &sao_band_ddistortion_avx2);
}
#endif //COMPILE_INTEL_AVX2
return success;
}